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Résumé

Dans cette thèse, nous étudions des chaînes et réseaux conduisant la chaleur, qui sont des prototypes
de systèmes hors équilibre. Nous prouvons l’existence et l’unicité de la mesure invariante (appelée
état stationnaire hors équilibre) pour des systèmes d’oscillateurs et de rotateurs classiques couplés à
des thermostats stochastiques ayant (possiblement) des températures différentes. Nous présentons tout
d’abord les différents modèles étudiés, leur contexte, leurs relations, ainsi que certaines propriétés
démontrées dans la littérature. Nous prouvons ensuite les trois nouveaux résultats résumés ci-dessous.

Réseaux d’oscillateurs. Premièrement, nous étudions un réseau de particules (oscillateurs) connec-
tées par des ressorts non linéaires. Certaines particules sont de plus couplées à des thermostats de
type Langevin. La structure du réseau est arbitraire, mais le déplacement de chaque particule est
1D. Pour des interactions polynomiales, nous donnons des conditions suffisantes pour que le critère
des “crochets de Hörmander” soit satisfait. Ceci implique l’unicité de l’état stationnaire (s’il existe),
ainsi que la contrôlabilité du système associé en théorie du contrôle. Les conditions obtenues sont
constructives; elles reposent sur l’inéquivalence des forces (modulo translation) et/ou la topologie
du réseau. Elles s’appliquent récursivement: les particules “contrôlées” peuvent être utilisées pour
contrôler leurs voisines, et ainsi de suite. Nous appliquons ensuite ce résultat à plusieurs types de
réseaux physiques.

Chaînes de trois rotateurs. Deuxièmement, nous considérons une chaîne de trois rotateurs, dont les
extrémités sont couplées à des thermostats. Sous une hypothèse de non-dégénérescence des potentiels
d’interaction, nous montrons que le processus admet une unique mesure invariante, et obtenons une
exponentielle étirée comme vitesse de relaxation. La partie cruciale du problème est d’estimer le
taux de décroissance de l’énergie du rotateur central. Comme il n’interagit pas directement avec les
thermostats, son énergie ne peut être dissipée qu’à travers les deux rotateurs externes. Mais lorsqu’il
tourne très rapidement, le rotateur central se découple à cause des oscillations rapides des forces. En
utilisant des méthodes de moyennage inspirées par des travaux de Hairer et Mattingly, nous obtenons
une dynamique effective pour le rotateur central. Celle-ci nous permet de construire une fonction de
Lyapunov qui, combinée à un argument d’irréductibilité, donne le résultat souhaité.

Chaînes de quatre rotateurs. Finalement, nous généralisons les résultats mentionnés ci-dessus à une
chaîne de quatre rotateurs dans une configuration similaire. Plus précisément, nous obtenons à nouveau
l’existence et l’unicité de la mesure invariante, et une convergence en exponentielle étirée. Le point
central est maintenant d’étudier la dissipation de l’énergie des deux rotateurs centraux. Ceci se fait à
nouveau par moyennage. La nouvelle difficulté avec quatre rotateurs est l’apparition de résonances
quand les deux rotateurs centraux sont rapides et découplent de leurs voisins. Ces résonances ont un
effet physique réel, comme illustré numériquement. Par des méthodes de moyennage plus complexes,
qui reposent sur la thermalisation rapide des rotateurs externes, nous montrons que ces résonances
n’empêchent pas la dissipation de l’énergie des rotateurs centraux. Ceci nous permet à nouveau de
conclure en construisant une fonction de Lyapunov.
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Abstract

In this thesis, we consider heat-conducting chains and networks, which are prototypical examples
of non-equilibrium systems. We prove the existence and uniqueness of an invariant measure (called
non-equilibrium steady state) for some classical systems made of interacting oscillators and rotors
coupled to stochastic heat baths at (possibly) different temperatures. We start by introducing the
models of interest in this work and putting them into context. We explain how the different models
are related, and recall some earlier results. Then, we prove three new results, which are summarized
below.

Networks of oscillators. First, we consider a network of particles (oscillators) connected by non-
linear springs. Some particles are coupled to Langevin heat baths. The structure of the network
is arbitrary, but the motion of each particle is 1D. For polynomial interactions, we give sufficient
conditions for Hörmander’s bracket condition to hold, which implies the uniqueness of the steady state
(if it exists), as well as the controllability of the associated system in control theory. These conditions
are constructive; they are formulated in terms of inequivalence of the forces (modulo translations)
and/or conditions on the topology of the connections. The condition is recursive: we show that when
some particles are “controlled”, they can in turn be used to control some of their neighbors. We show
that our criterion applies to several types of physical lattices.

Chains of three rotors. Secondly, we consider a chain of three rotors whose ends are coupled to
heat baths. Under some non-degeneracy condition on the interaction potentials, we prove that the
process admits a unique invariant probability measure, and relaxes to it at a stretched exponential rate.
The interesting issue is to estimate the rate at which the energy of the middle rotor decreases. As it
is not directly connected to the heat baths, its energy can only be dissipated through the two outer
rotors. But when the middle rotor spins very rapidly, it fails to interact effectively with its neighbors
due to the rapid oscillations of the forces. Using averaging techniques inspired by works of Hairer
and Mattingly, we obtain an effective dynamics for the middle rotor, which then enables us to find a
Lyapunov function. This and an irreducibility argument give the desired result.

Chains of four rotors. Thirdly, we generalize the results mentioned above to a chain of four rotors
in a similar setup. Namely, we obtain again the existence, uniqueness, and stretched exponential
convergence rate to the non-equilibrium steady state. The crucial point is now to estimate how fast the
energy of the two central rotors is dissipated. This is again obtained by some averaging techniques.
The main new difficulty with four rotors is the appearance of resonances when both central rotors are
fast and decouple from their neighbors. These resonances have a physical meaning, as we illustrate
numerically. By introducing some more involved averaging techniques, which rely on the rapid
thermalization of the two external rotors, we show that the resonances do not play a disturbing role on
the rate of energy dissipation. This allows us to construct a Lyapunov function and obtain the desired
result.
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1. Introduction

While there exists a well-established theory of equilibrium (and close to equilibrium) statistical
mechanics, its non-equilibrium counterpart remains a work in progress. The field is attracting a lot
of attention because many daily phenomena take place out of equilibrium, and because it raises very
interesting mathematical challenges.

By definition, the “usual” statistical ensembles (microcanonical, canonical, grand canonical)
describe systems in equilibrium, and are intrinsically time-reversible. These ensembles can therefore
bear no current (of particles, energy, charges, . . . ). Non-equilibrium statistical mechanics attempts
to describe systems which are maintained out of equilibrium by some external action. Typically, the
external action can be

• an external (possibly time-dependent) force,

• letting different parts of the system interact with heat baths at different temperatures, or

• inserting particles in one region of the system and letting particles escape somewhere else.

In fact, most systems that we observe in everyday life are out of equilibrium (think for example of
an electric conductor, a piece of metal heated at one end, the weather, a star, a cell, or even the human
body). Nice introductions to non-equilibrium systems are given in [40, 48]. See also [2, 39].

For a given model of non-equilibrium system (which can be deterministic, stochastic, quan-
tum, . . . ), the mathematical challenge is to extract statistical properties from the dynamics. In
particular, one would like to compute the average of observable quantities, their fluctuations, etc.

One very important and long-studied class of non-equilibrium problems is that of heat-conducting
systems. Consider a rod (typically an electrical insulator) in contact at both ends with heat reservoirs
at different temperatures, say TL at the left and TR at the right, with TL > TR. According to
Fourier’s law, we expect to see a heat flux along the rod from left to right, which is proportional to
the temperature difference TL − TR (at least if the temperature difference is small), and inversely
proportional to the length of the rod. A great challenge is to derive this law starting from some
microscopical description of the medium (here, the rod). See [7, 42] for more information on this
long-standing problem.

A model of a heat-conducting medium is typically a network of interacting sites (which can be
thought of as “atoms”) coupled to some “heat baths”, and must specify the following.

• What each site is made of. We will consider rotors and oscillators undergoing some Hamiltonian
dynamics.

• The notion of heat baths. While there are many ways to model heat baths, we will use (and
introduce) the simplest for our purpose: Langevin thermostats.

• The interactions and the topology of the network. One typically considers chains with nearest-
neighbor interactions, or regular (square, cubic, triangular, hexagonal, ...) lattices.

Different models can lead to very different results, and require quite different methods. Fourier’s
law has only been proved for a few models (see for example [5, 6, 24, 25] and the reviews [7, 42]). For
networks with purely classical Hamiltonian interactions, proving Fourier’s law seems currently out of
reach. There are in fact questions which arise well before Fourier’s law from an analytical point of

1



1.1. HAMILTONIAN SYSTEMS INTERACTING WITH LANGEVIN THERMOSTATS

view, and which are already surprisingly challenging: Is the system stable in a statistical sense? Does
the system admit a steady state? Is this steady state unique?

In the current state of research, these “elementary” questions have been answered only in some
specific cases. In this thesis, we give positive answers for some classes of models.

1.1. Hamiltonian systems interacting with Langevin thermostats

We consider a classical system of N particles, each of which only moves in one dimension. We denote
by qi, pi the position and momentum of the particle i for i ∈ {1, . . . , N}, and we denote the phase
space by Ω. We consider two cases, depending on the domain of qi:

• Oscillators: Ω = RN × RN . That is, qi ∈ R and pi ∈ R.

• Rotors: Ω = TN × RN , where TN is the N -torus. We use the convention T = R/2πZ. We
then have qi ∈ [0, 2π) and again pi ∈ R. We view each particle as a rotating disk (rotor).

We write q = (q1, . . . , qN ), p = (p1, . . . , pN ), and introduce the Hamiltonian

H(q, p) =

N∑

i=1

(
p2
i

2
+ Ui(qi)

)
+

N∑

i,j=1
i>j

Wi,j(qi − qj) , (1.1.1)

where the Ui are smooth pinning potentials, and the Wi,j are smooth interaction potentials. Observe
that all the masses are chosen to be 1, for simplicity. We view (1.1.1) as a network of interacting
oscillators or rotors. The topology of the network depends on which interaction potentials are non-
constant. Indeed, there is simply no interaction between two sites i and j (i > j) if Wi,j is contant.
We will always assume that H has compact level sets, i.e., that the (total) potential is confining.

We now single out a set B ⊂ {1, . . . , N} of particles, which we let interact with some heat baths.
For each i ∈ B, we make the particle i interact with a Langevin thermostat at temperature Ti > 0,
with coupling (or friction) constant γi > 0. More precisely, we consider the stochastic differential
equation (SDE)

dqi = pi dt , i = 1, . . . , N ,

dpi = −∂qiH(q, p) dt, i /∈ B,
dpi = −∂qiH(q, p) dt− γipi dt+

√
2γiTidBi , i ∈ B ,

(1.1.2)

where the Bi, i ∈ B, are independent, normalized Wiener processes1. That is, each Langevin heat bath
consists of a stochastic term

√
2γiTidBi and a friction term −γipi dt, both acting on pi. Langevin

heat baths are a very simplistic choice of thermostats, but they have the advantage that the solutions to
(1.1.2) form a Markov process. See for example §3 of [42] or §4 of [7] for reviews of other possible
thermostats. We make the following remarks about Langevin heat baths.

• In the trivial case where N = 1 and B = {1}, we retrieve the Langevin equation.

1In §3, we will drive the system further out of equilibrium by applying constant, external forces on some sites

2



CHAPTER 1. INTRODUCTION

• When all the temperatures are the same, say Ti = 1
β for all i ∈ B and some β > 0, the

Gibbs-Boltzmann distribution 1
Z e
−βH is invariant (more on this below). This justifies the

interpretation of Ti as a temperature.

• While no “physical” reservoir acts as a Langevin thermostat on the system, it is possible to
retrieve such stochastic heat baths in some appropriate weak coupling limit [53].

• In [22, 23], the authors consider chains of oscillators interacting with “infinite” Hamiltonian
heat reservoirs. These reservoirs take the form of free fields, the initial conditions of which
are distributed according some Gibbs measures at (possibly) different temperatures. It is then
shown that for specific choices of interaction between the chain and the fields, the latter can
be “integrated out” and replaced with a finite number of auxiliary variables in such a way that
the resulting process is Markovian. The equation (1.1.2) can then be retrieved by taking some
appropriate limit (see the discussion above the equation (10) of [50], and also [28]).

We now introduce the questions that we will ask about (1.1.2). As mentioned above, the solutions
to (1.1.2) form a Markov process, and we introduce the transition probabilities

P t(x,A) ≡ P (xt ∈ A|x0 = x) , (1.1.3)

where t ≥ 0 is the time, x is the initial condition, and A is any Borel subset of Ω. This induces a
semigroup P t, t ≥ 0 on the space of Borel probability measures on Ω. If ν is a probability measure
(think of it as some distribution of initial conditions), we define a time-evolved probability measure
P tν given by

(P tν)(B) ≡
∫

Ω
P t(x,B)dν(x) ,

where B is any Borel subset of Ω. The semigroup makes a probability measure ν “evolve” with time:
P tν is the probability distribution at time t, given that the probability distribution at time 0 was ν.

Now the question is whether there exists a probability measure µ which is invariant under the
semigroup P t, namely such that P tµ = µ for all t ≥ 0. Such a µ is called an invariant measure, or a
stationary state. For non-equilibrium systems, the term non-equilibrium steady state is often used.

If there exists such an invariant measure, then one can ask whether it is unique, and whether the
transition probabilities converge to it, i.e., whether

lim
t→∞

P t(x, · ) = µ (1.1.4)

for every initial condition x ∈ Ω. We will be interested in the norms with respect to which we have
(1.1.4), and in the speed of convergence, which we call relaxation rate.

One can similarly consider a semigroup T t, t ≥ 0 acting on observables. For any measurable
function f : Ω→ R (with some conditions on its growth, see Chapter 3 and Chapter 4), we define

T tf(x) =

∫

Ω
f(y)P t(x, dy) = Exf(xt) ,

where Ex is the expectation with respect to the process started at x ∈ Ω.

3



1.1. HAMILTONIAN SYSTEMS INTERACTING WITH LANGEVIN THERMOSTATS

We have the duality relation
∫

Ω
T tfdν =

∫

Ω
fd(P tν) ,

provided that f is of sufficiently slow growth.
Now, if there is a unique invariant measure µ, the question dual to (1.1.4) is to determine a class

of functions f for which

lim
t→∞

T tf(x) =

∫

Ω
fdµ , (1.1.5)

for all x ∈ Ω, and to determine the speed of convergence.
A central tool is the generator L of the semigroup T t, which is the second-order differential

operator

L =
N∑

i=1

(pi∂qi − (∂qiH)∂pi) +
∑

i∈B

(
−γipi∂pi + γiTi∂

2
pi

)
. (1.1.6)

We have formally L = d
dtT

t|t=0. The first immediate observation is that

LH(q, p) =
∑

i∈B
(γiTi − γip2

i ) . (1.1.7)

This reflects the fact that only the heat baths can change the energy of the system, since the Hamiltonian
dynamics preserves it. Since the coefficients of the SDE (1.1.2) are locally Lipschitz, H is bounded
below with compact level sets, and the right-hand side of (1.1.7) is bounded above, we know that
the solutions to (1.1.2) are unique, and almost surely defined for all times and continuous (see for
example [10, Theorem 3.5]). This also ensures that the transition kernel (1.1.3) is well-defined and
enjoys the Feller property, namely that if f is continuous and bounded, then so is T tf .

The generator of P t is the formal adjoint of L, namely

L∗ =
N∑

i=1

(−pi∂qi + (∂qiH)∂pi) +
∑

i∈B

(
γi(1 + pi∂pi) + γiTi∂

2
pi

)
,

where we have used that −∂qipi + ∂pi(∂qiH) = 0 (which is in fact a manifestation of Liouville’s
theorem). At thermal equilibrium, namely when all the temperatures are equal, say Ti = 1

β for some
β > 0 and all i ∈ B, it is easy to check that

L∗e−βH(q,p) = 0 (Ti = 1/β, i ∈ B) .

This, together with the existence of solutions for all times discussed above, implies that in the
equilibrium case, the (unnormalized) Gibbs-Boltzmann measure

dµβ ≡ e−βH(q,p)dpdq

4



CHAPTER 1. INTRODUCTION

is invariant. Moreover, if the potential is sufficiently confining (for example if it grows at least
polynomially in all directions), this measure can be normalized to a probability measure. Thus, at
thermal equilibrium, we know that there exists a steady state. Even in this case, however, we have at
this point no information about whether it is unique, and whether (1.1.4) holds.

1.1.1. Earlier results

A class of systems which has been widely studied consists of chains of oscillators (see Figure 1.1).
That is to say, we consider a Hamiltonian

H =
N∑

i=1

(p2
i

2
+ Ui(qi)

)
+
N−1∑

i=1

Wi+1,i(qi+1 − qi) . (1.1.8)

Such chains of oscillators have been studied numerically for many different potentials (and
also many kinds of heat baths, including the Langevin thermostats that we consider here). See for
example [1, 8, 31, 41].

U1 U2 U3 UN−1 UN
W2,1 W3,2 WN,N−1

TL TR. . .
1 2 3 N − 1 N

Figure 1.1 – A chain of oscillators.

From a rigorous point of view, however, only limited results are available. The existence of a
steady state has only been obtained in some cases where the potentials are asymptotically polynomial.
For the present discussion, we assume that

Ui(qi) ∼ |qi|`, and Wi+1,i(qi+1 − qi) ∼ |qi+1 − qi|k

for some exponents k, ` ≥ 2 (for the precise meaning of the relation ∼, see the references below).
Depending on whether k ≥ ` or ` > k, the properties of the system are very different. We separate
the two cases as follows.

• Type-1 oscillators: k ≥ `. In this case, the interactions play an important role at high energy.

• Type-2 oscillators: ` > k. In this case, the interactions vanish at high energy, which compli-
cates the situation significantly (see below).

For type-1 oscillators, and under some non-degeneracy assumption on the interaction potentials,
the existence of an invariant measure for chains of arbitrary length N has been proved, and the
relaxation rate in (1.1.4) is exponential. This was first proved using functional analytic methods
in [23], and then generalized in [19, 20, 22] (note that the heat baths are slightly different from
ours). Later, a probabilistic proof (using discrete-time Lyapunov functions) was given in [50], and
an adaptation to Langevin thermostats was provided in [9]. The basic idea is to understand the
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1.1. HAMILTONIAN SYSTEMS INTERACTING WITH LANGEVIN THERMOSTATS

high-energy limit of the dynamics, by means of a scaling argument. The key is that because of the
strong interactions, it never happens that the two external oscillators (sites 1 and N ) remain at rest for
a long time, and this ensures that the friction terms in (1.1.2) dissipate enough energy in any finite
time interval. Further properties of chains of type-1 oscillators (including some asymptotic properties
and entropy production fluctuations) have been studied in [22, 49, 51].

For type-2 oscillators, the situation is more complicated, and the existence of an invariant measure
has been proved only for chains of length 3. The main difficulty is that when one of the oscillators has
a lot of energy, it “sees” only its pinning potential, since it grows faster than the interaction potentials.
The highly energetic site then oscillates very rapidly, which causes it to decouple from its neighbors.

Indeed, if one takes a particle of mass 1 in the 1D potential U(x) = |x|`, then the period of
oscillation depends on the energy E as follows (the turning points are ±E1/`):

τE = 2

∫ E1/`

−E1/`

dx√
2(E − |x|`)

∝ E 1
`
− 1

2 . (1.1.9)

For type-2 oscillators, we have ` > 2 (since k ≥ 2 and ` > k), and therefore the frequency of
the oscillations increases with the energy E. Now, assume that the site i has a very large energy
Ei, and that all other sites have a small energy. The particle at site i then essentially oscillates at
the natural frequency of the pinning potential, which grows like E1/2−1/`

i . The interaction forces
W ′i+1,i(qi+1 − qi) and −W ′i,i−1(qi − qi−1) then oscillate at this (high) frequency, and with average
zero. They have therefore a vanishing effect. In other words, sites with a very large energy tend to
decouple from their neighbors due to the very fast oscillations of the forces.

For a chain of length 3 with k = 2 (linear interactions) and ` ≥ 3, the existence of a steady state
has been proved in [34], and it has been shown that the convergence in (1.1.4) is not exponential when
` is large enough. For longer chains of type-2 oscillators, the existence of an invariant measure remains
an open problem. The results of [34] are obtained by some averaging/homogenization technique,
which we will introduce in detail in Chapter 3, when we adapt it to the case of rotors.

We now argue that chains of rotors (see Figure 1.2) are very similar to chains of type-2 oscillators.
Indeed, a crucial ingredient in [34] is the scaling of the period of the central oscillator with respect to
its energy, which is given by (1.1.9). The larger the `, the faster the oscillations at high energy, and
the more the central oscillator decouples. If we take formally the limit `→∞ in (1.1.9), we obtain
τE ∼ E−1/2, i.e., the frequency grows like

√
E. Also, when formally ` =∞, the pinning potential

becomes an infinite well, so the position space is “compactified”.

From this point of view, rotors can really be seen as a “worst-case” limit of type-2 oscillators.
Indeed, for rotors the position space is compact and the frequency scales like

√
E (the potentials are

bounded, so at high energy the momentum is essentially proportional to
√
E). While the similarity

between the two kinds of systems is purely formal at this point, it will become obvious in Chapter 3
when we deal with a chain of three rotors by adapting the methods of [34]. The advantage of rotors
over oscillators is that all forces are bounded (since the position space TN is compact), which is
technically convenient.

Of course, in addition to the relation with chains of type-2 oscillators, chains of rotors have
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CHAPTER 1. INTRODUCTION

TL TR

q1 q2 q3 qN−1 qN

Figure 1.2 – A chain of rotors.

their intrinsic interest and many of their (sometimes very surprising) properties have been studied
numerically and perturbatively [7, 15, 30, 37, 42].

1.2. Organization of the thesis

The remainder of this thesis is a reproduction of three papers.
In Chapter 2, which reproduces [11], we study the controllability/uniqueness problem for some

networks of oscillators with polynomial interaction potentials. We give a sufficient condition for
Hörmander’s bracket condition to hold, which we formulate in terms of equivalence of the potentials.
We also give some sufficient conditions that depend on the topology of the network alone, and which
cover many physical lattices.

In Chapter 3, which was published in [13], we prove the existence of a steady state for a chain of
3 rotors, and show that the relaxation speed is a stretched exponential e−c

√
t. We prove this result by

adapting the method developed in [34] for 3 oscillators of type 2.
Finally, in Chapter 4, which reproduces [12], we prove a similar result for a chain of 4 rotors. The

main new difficulty is the existence of resonances between the two central rotors. We argue that these
resonances actually have a physical meaning. The main new method developed in Chapter 4 is some
form of stochastic averaging (in addition to the averaging over the rapid oscillations). We show that
the resonant terms can be approximated (up to a well-controlled error) by some stochastic averages,
and that as a result, the resonances have no undesirable effect.
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2. Networks of oscillators

We reproduce here the contents of [11]. The only modifications compared to the published version are
a few supplementary references.

Controlling general polynomial networks
with Jean-Pierre Eckmann

Communications in Mathematical Physics 328 (2014), 1255–1274

Abstract

We consider networks of massive particles connected by non-linear springs. Some particles
interact with heat baths at different temperatures, which are modeled as stochastic driving forces.
The structure of the network is arbitrary, but the motion of each particle is 1D. For polynomial
interactions, we give sufficient conditions for Hörmander’s “bracket condition” to hold, which
implies the uniqueness of the steady state (if it exists), as well as the controllability of the
associated system in control theory. These conditions are constructive; they are formulated in
terms of inequivalence of the forces (modulo translations) and/or conditions on the topology of the
connections. We illustrate our results with examples, including “conducting chains” of variable
cross-section. This then extends the results for a simple chain obtained in [23] .

2.1. Introduction

We consider a network of interacting particles described by an undirected graph G = (V, E) with a set
V of vertices and a set E of edges. Each vertex represents a particle, and each edge represents a spring
connecting two particles. We single out a set V∗ ⊂ V of particles, each of which interacts with a heat
bath. We address the question of when such a system has a unique stationary state. This question
has been studied for several special cases: Starting from a linear chain [22, 23], results have become
more refined in terms of the relation between the spring potentials and the pinning potentials which
tie the masses to the laboratory frame [19, 49]. This problem is very delicate, as is apparent from the
extensive study in [33] for the case of only 2 masses.

We provide conditions on the interaction potentials that imply Hörmander’s “bracket condition,”
from which it follows that the semigroup associated to the process has a smoothing effect. This,
together with some stability assumptions, implies the uniqueness of the stationary state. The existence
is not discussed in this paper, but seems well understood in the case where the interaction potentials
are stronger than the pinning potentials. This issue will be explained in a forthcoming paper [21].

Since the problem is known (see for example [32] and [3]) to be tightly related to the control
problem where the stochastic driving forces are replaced with deterministic control forces, we shall use
the terminology of control theory, and mention the implications of our results from the control-theoretic
viewpoint.
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2.2. THE SYSTEM

We work with unit masses and interaction potentials that are polynomials of degree at least 3, and
we say that two such potentials V1 and V2 have equivalent second derivative if there is a δ ∈ R such
that V ′′1 ( · ) = V ′′2 ( · + δ).

We start with the set V∗ of particles that interact with heat baths, and are therefore controllable.
One of our results (Corollary 2.5.6) is formulated as a condition for some of the particles in the set
of first neighbors N (V∗) of V∗ to be also controllable. Basically, the condition is that these particles
must be “inequivalent” in a sense that involves both the topology of their connections to V∗ and the
corresponding interaction potentials. More precisely, a sufficient condition for a particle v ∈ N (V∗)
to be controllable is that for each other particle w ∈ N (V∗) at least one of the two conditions holds:

(a) v and w are connected to V∗ in a topologically different way,

(b) there is a particle c in V∗ such that the interaction potential between c and v and that between c
and w have inequivalent second derivative.

It is then possible to use this condition recursively, taking control of more and more masses at each
step (Theorem 2.5.7). If by doing so we can control all the masses in the graph, then Hörmander’s
bracket condition holds.

In §2.6 we give examples of physically relevant networks whose controllability can be established
using this method.

Our results imply in particular that connected graphs are controllable for “almost all” choices of
the interaction potentials, provided that they are polynomials of degree at least 3 (Corollary 2.6.3).

2.2. The system

We define a Hamiltonian for the graph G = (V, E) as follows. Each particle v ∈ V has position
qv ∈ R and momentum pv ∈ R and is “pinned down” by a potential Uv(qv). Throughout, we assume
the masses being 1, for simplicity of notation. See Remark 2.4.20 on how to adapt the results when
the masses are not all equal.

We denote each edge e ∈ E by {u, v} (or equivalently {v, u}) where u, v are the vertices adjacent
to e.1 To each edge e = {u, v}, we associate an interaction potential Vuv(qu − qv), or equivalently
Vvu(qv − qu) with

Vvu(qv − qu) ≡ Vuv(qu − qv) . (2.2.1)

Note that we do not require the potentials to be even functions; the condition (2.2.1) just makes sure
that considering e = {u, v} or e = {v, u} leads to the same physical interaction, which is consistent
with the fact that the edges are not oriented.

With the notation q = (qv)v∈V and p = (pv)v∈V the Hamiltonian is then

H(q, p) =
∑

v∈V

(
p2
v/2 + Uv(qv)

)
+
∑

e∈E
Ve(δqe) ,

where it is understood that Ve(δqe) denotes one of the two expressions in (2.2.1).
Finally, we make the following assumptions:

1Due to the physical nature of the problem, we assume that the graph has no self-edge.

10



CHAPTER 2. NETWORKS OF OSCILLATORS

Assumption 2.2.1.

1. All the functions that we consider are smooth.

2. The level sets of H are compact, i.e., for each K > 0 the set {(q, p) |H(q, p) ≤ K} is compact.

3. The function exp(−βH) is integrable for some β > 0.

Each particle v ∈ V∗ is coupled to a heat bath at temperature Tv > 0 with coupling constant
γv > 0. For convenience, we set γv = 0 when v /∈ V∗. The model is then described by the system of
stochastic differential equations

dqv = pv dt , (2.2.2)

dpv = −U ′v(qv)dt− ∂qv
(∑

e∈E
Ve(δqe)

)
dt− γvpvdt+

√
2Tvγv dWv(t) ,

where the Wv are identical independent Wiener processes. The solutions to (2.2.2) form a Markov
process. The generator of the associated semigroup is given by

L ≡ X0 +
∑

v∈V∗

γvTv∂
2
pv ,

with

X0 ≡ −
∑

v∈V∗

γvpv∂pv +
∑

v∈V

(
pv∂qv − U ′v(qv)∂pv

)
−

∑

{u,v}∈E

V ′uv(qu − qv) · (∂pu − ∂pv) .

From now on, we assume that the interaction potentials Ve, e ∈ E are polynomials of degree at least
3. The condition on the degree means that we require throughout the presence of non-harmonicities.
The fully-harmonic case has been described earlier [26], and the case where some but not all the
potentials are harmonic is not covered here. We will show in a counter-example (Example 2.7.3) that
the non-harmonicities are really essential for our results. We make no assumption about the pinning
potentials Uv; we do not require them to be polynomials, and some of them may be identically zero.

We work in the space R2|V| with coordinates x = (q, p). We identify the vector fields over R2|V|

and the corresponding first-order differential operators in the usual way. This enables us to consider
Lie algebras of vector fields over R2|V|, where the Lie bracket [ · , · ] is the usual commutator of two
operators.

Definition 2.2.2. We defineM as the smallest Lie algebra that

(i) contains ∂pv for all v ∈ V∗,2

(ii) is closed under the operation [ · , X0],

(iii) is closed under multiplication by smooth scalar functions.

By the definition of a Lie algebra,M is closed under linear combinations and Lie brackets.
2Due to the identification mentioned above, we view here ∂pv as a constant vector field over R2|V|.
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2.2. THE SYSTEM

Definition 2.2.3. We say that a particle v ∈ V is controllable if we have ∂qv , ∂pv ∈M. We say that
the network G is controllable if all the particles are controllable, i.e., if

∂qv , ∂pv ∈M for all v ∈ V . (2.2.3)

The aim of this paper is to give sufficient conditions on G and the interaction potentials, which
guarantee that the network is controllable.

If the network is controllable in the sense (2.2.3), then Hörmander’s condition3 [36] holds: for all
x, the vector fields F ∈M evaluated at x span all of R2|V|, i.e.,

{F (x) | F ∈M} = R2|V| for all x ∈ R2|V| . (2.2.4)

Hörmander’s condition implies that the transition probabilities of the Markov process (2.2.2) are
smooth, and that so is any invariant measure (see for example [3, Cor. 7.2]). We now briefly mention
two implications of these smoothness properties. Proposition 2.2.4 and Proposition 2.2.5 below can
be deduced from arguments similar to those exposed in [32]. The argument of §3.5.2 can also easily
be adapted to the present case.

Proposition 2.2.4. Under Assumption 2.2.1, if (2.2.4) holds, then the Markov process (2.2.2) has at
most one invariant probability measure.

The control-theoretic problem corresponding to (2.2.2) is the system of ordinary differential
equations

q̇v = pv,

ṗv = −U ′v(qv)− ∂qv
(∑

e∈E
Ve(δqe)

)
+ (uv(t)− γvpv) · 1v∈V∗ , (2.2.5)

where for each v ∈ V∗, uv : R→ R is a smooth control function (i.e., the stochastic driving forces
have been replaced with deterministic functions).4

Proposition 2.2.5. Under the hypotheses of Proposition 2.2.4, the system (2.2.5) is controllable in the
sense that for each x(0) = (q(0), p(0)) and x(f) = (q(f), p(f)), there are a time T and some smooth
controls uv, v ∈ V∗, such that the solution x(t) of (2.2.5) with x(0) = x(0) verifies x(T ) = x(f).

In fact, (2.2.4) is a well-known condition in control theory. See for example [38], which addresses
the case of piecewise constant control functions. In particular, (2.2.4) implies by [38, Thm. 3.3] that
for every initial condition x(0) and each time T > 0, the set A(x(0), T ) of all points that are accessible
at time T (by choosing appropriate controls) is connected and full-dimensional.

3The condition (2.2.4) is slightly different, but equivalent to the usual statement of Hörmander’s criterion. This can be
checked easily. In particular, closingM under multiplication by smooth scalar functions does not alter the set in (2.2.4),
and will be very convenient.

4Whether or not we keep the dissipative terms −γvpv in (2.2.5) makes no difference since they can always be absorbed
in the control functions.
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2.3. Strategy

We want to show that ∂qv , ∂pv ∈M for all v ∈ V . The next lemma shows that we only need to worry
about the ∂pv .

Lemma 2.3.1. Let A be a subset of V .

If
∑

v∈A
∂pv ∈M then

∑

v∈A
∂qv ∈M .

Proof. Assuming
∑

v∈A ∂pv ∈M, we find that

[∑

v∈A
∂pv , X0

]
=
∑

v∈A
∂qv −

∑

v∈V∗∩A
γv∂pv (2.3.1)

is inM. But since ∂pv ∈M for all v ∈ V∗, the linear structure ofM implies
∑

v∈V∗∩A γv∂pv ∈M.
Adding this to the vector field in (2.3.1) shows that

∑
v∈A ∂qv ∈M, as claimed.

Definition 2.3.2. We say that a set A ⊂ V is jointly controllable if
∑

v∈A ∂pv is inM (and therefore,
also

∑
v∈A ∂qv by Lemma 2.3.1).

Requiring all the particles in a set A to be (individually) controllable is stronger than asking the
set A to be jointly controllable (indeed, if all the ∂pv , v ∈ A are inM, then so is their sum). We will
obtain jointly controllable sets and then “refine” them until we control particles individually.

The strategy is as follows. In the next section, we start with a controllable particle c, and show that
its first neighbors split into jointly controllable sets. Then, in §2.5, we consider several controllable
particles, and basically intersect the jointly controllable sets obtained for each of them, in order to
control “new” particles individually. Finally, we iterate this procedure, taking control of more particles
at each step, until we establish (under some conditions) the controllability of the whole network.

Remark 2.3.3. Observe in the following that our results neither involve the pinning potentials Uv nor
the coupling constants γv.

2.4. The neighbors of one controllable particle

We consider in this section a particle c ∈ V , and denote by T c the set of its first neighbors (the
“targets”). The following notion of equivalence among polynomials enables us to split T c into
equivalence classes.

Definition 2.4.1. Two polynomials f and g are called equivalent if there is a δ ∈ R such that
f( · ) = g( · + δ).

Definition 2.4.2. We say that two particles v, u ∈ T c are equivalent (with respect to c) if the two
polynomials V ′′cv and V ′′cu are equivalent.
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2.4. THE NEIGHBORS OF ONE CONTROLLABLE PARTICLE

Since this relation is symmetric and transitive, the set T c is naturally decomposed into a disjoint
union of equivalence classes:

T c = ∪iT ci .

An explanation of why we use the second derivative of the potentials instead of the first one (i.e., the
force) will be given in Example 2.7.2. The main result of this section is

Theorem 2.4.3. Assume that c is controllable. Then, each equivalence class T ci is jointly controllable,
i.e., ∑

v∈T ci

∂pv ∈M for all i . (2.4.1)

Furthermore, there are constants δcv such that for all i,
∑

v∈T ci

(qc − qv + δcv)∂pv ∈M . (2.4.2)

The second part of the theorem will be used in the next section to intersect the equivalence classes
T ci of several controllable particles c. We will now prepare the proof of Theorem 2.4.3. We assume in
the remainder of this section that c is controllable. And since c is fixed, we write T and Ti instead of
T c and T ci .

Lemma 2.4.4. We have ∑

v∈T
V ′′cv(qc − qv)∂pv ∈M . (2.4.3)

Proof. From Lemma 2.3.1 we conclude that ∂qc ∈M. Therefore, we find that

[∂qc , X0] = −U ′′c (qc)∂pc −
∑

v∈T
V ′′cv(qc − qv) · (∂pc − ∂pv)

is inM. Now, since ∂pc ∈M and sinceM is closed under multiplication by scalar functions, we can
subtract all the contributions that are along ∂pc and obtain (2.4.3).

We need a bit of technology to deal with equivalent polynomials.

Definition 2.4.5. Let g(t) =
∑k

i=0 ait
i/i! be a polynomial of degree k ≥ 1. If ak−1 = 0, we say that

g is adjusted. As can be checked, the polynomial g̃( · ) ≡ g( · − ak−1/ak) is always adjusted, and is
referred to as the adjusted representation of g.

Observe that a polynomial and its adjusted representation are by construction equivalent and have
the same degree and the same leading coefficient. In fact, given a polynomial g of degree k ≥ 1, g̃ is
the only polynomial equivalent to g that is adjusted. This adjusted representation will prove to be very
useful thanks to the following obvious

Lemma 2.4.6. Two polynomials g and h of degree at least 1 are equivalent iff g̃ = h̃.
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Remark 2.4.7. If all the interaction potentials are even, then all the V ′′cv are automatically adjusted,
and some parts of the following discussion can be simplified.

We shift the argument of each V ′′cv by a constant δcv so that they are all adjusted. We let f̃v be the
adjusted representation of V ′′cv and use the notation

xv ≡ qc − qv + δcv

so that
f̃v(xv) = V ′′cv(qc − qv) for all qc, qv ∈ R .

With this notation, (2.4.3) reads as
∑

v∈T
f̃v(xv)∂pv ∈M . (2.4.4)

We will now mostly deal with “diagonal” vector fields, i.e., vector fields of the kind (2.4.4), where the
component along ∂pv depends only on xv. When taking commutators, it is crucial to remember that
xv is only a notation for qc − qv + δcv.

Remark 2.4.8. By the definition of equivalence and Lemma 2.4.6, two particles v, w ∈ T are
equivalent iff f̃v and f̃w coincide.

Lemma 2.4.9. Consider some functions gv, v ∈ T .

If
∑

v∈T
gv(xv)∂pv ∈M then

∑

v∈T
g′v(xv)∂pv ∈M . (2.4.5)

Proof. This is immediate by commuting with ∂qc (which is inM by Lemma 2.3.1).

We now introduce the main tool.

Definition 2.4.10. Given two vector fields Y and Z, we define the double commutator
q
Y : Z

y
by

q
Y : Z

y
≡ [[X0, Y ], Z] .

Obviously, if the vector fields Y and Z are inM, then so is
q
Y : Z

y
.

Lemma 2.4.11. Consider some functions gv, hv, v ∈ T . Then
q∑

v∈T
gv(xv)∂pv :

∑

v′∈T
hv′(xv′)∂pv′

y
=
∑

v∈T
(gvhv)

′(xv) ∂pv . (2.4.6)

Proof. Observe first that (omitting the arguments xv)
[
X0,

∑

v∈T
gv∂pv

]
=
∑

v∈T
(pc − pv)g′v∂pv −

∑

v∈T
gv∂qv +

∑

v∈T ∩V∗

γvgv∂pv .

Commuting with
∑

v′∈T hv′(xv′)∂pv′ gives the desired result.
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2.4. THE NEIGHBORS OF ONE CONTROLLABLE PARTICLE

We will prove Theorem 2.4.3 starting from (2.4.4) and using only (2.4.5) and double commutators
of the kind (2.4.6).

Let dv be the degree of f̃v. Note that since the interaction potentials are of degree at least 3, we
have dv ≥ 1. We define

d ≡ max
v∈T

dv ≥ 1

as the maximal degree of the adjusted polynomials f̃v with v ∈ T . We can then write

f̃v(x) =

d∑

j=0

bvj x
j/j! ,

for some real coefficients bvj , j = 0, . . . , d, with

bvj = 0 if j > dv and bv,dv−1 = 0 ,

for all v ∈ T .

Definition 2.4.12. We define the set of particles v ∈ T corresponding to the maximal degree d:

D d ≡ {v ∈ T | dv = d} .

For every `, 0 ≤ ` ≤ d, we define the set

B d` ≡ {bv` | v ∈ D d}

of distinct values taken by the coefficients of x`v/`! in f̃v , v ∈ D d.

We begin with a technical lemma. Observe how it is expressed in terms of the xv. In a sense,
this shows that the xv are really the “natural” variables for this problem. Thus, in addition to making
the notion of equivalence trivial (Remark 2.4.8), working with adjusted representations will be very
convenient from a technical point of view.

Lemma 2.4.13. The following hold:

(i) For each b ∈ B dd , we have
∑

v∈D d : bvd=b

xv∂pv ∈M and
∑

v∈D d : bvd=b

∂pv ∈M . (2.4.7)

(ii) Furthermore, ∑

v∈D d
xv∂pv ∈M and

∑

v∈D d
∂pv ∈M . (2.4.8)

(iii) Let αv, βv, v ∈ D d be real constants. If d ≥ 2, we have the two implications

if
∑

v∈D d
αv ∂pv ∈M , then

∑

v∈D d
αv xv ∂pv ∈M , (2.4.9)
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if
∑

v∈D d
αv ∂pv ,

∑

v∈D d
βv ∂pv ∈M , then

∑

v∈D d
αv βv ∂pv ∈M . (2.4.10)

Remark 2.4.14. Observe that the assumption d ≥ 1 is crucial in the proof of (i). Requiring the f̃v to
be non-constant ensures that we can find non-trivial double commutators, which is the crux of our
analysis. See Example 2.7.3 for what goes wrong for harmonic potentials.

Proof. (i). By (2.4.4) and using (2.4.5) recursively d− 1 times, we find that

Y ≡
∑

v∈T

(
∂ d−1f̃v

)
(xv) ∂pv =

∑

v∈T
(bv,d−1 + bvdxv) ∂pv

is inM. But now, by (2.4.6),
q
Y : Y/2

y
=
∑

v∈T
bvd(bv,d−1 + bvdxv)∂pv ∈M .

Taking more double commutators with Y/2, we obtain for all r ≥ 1:
∑

v∈T
b rvd (bv,d−1 + bvdxv)∂pv ∈M .

But the sum above is really only over D d since bvd 6= 0 only if v ∈ D d. Moreover, for these v, we
have bv,d−1 = 0 since the polynomials are adjusted, so that for all i ≥ 2,

∑

v∈D d
bivdxv∂pv ∈M . (2.4.11)

Let b ∈ B dd . Using Lemma 2.9.1 (in the appendix below) with s = 1 and with the set of distinct
and non-zero values {bvd | v ∈ D d} = B dd we find real numbers r1, r2, . . . , rn (with n =

∣∣B dd
∣∣) such

that
∑n

i=1 ri b
i+1
vd equals 1 if bvd = b and 0 when bvd 6= b. Thus,

n∑

i=1

ri
∑

v∈D d
bi+1
vd xv∂pv =

∑

v∈D d : bvd=b

xv∂pv

is inM by (2.4.11). This together with (2.4.5) establishes the second inclusion of (2.4.7), so that we
have shown (i).

The statement (ii) follows by summing (i) over all b ∈ B dd .

Proof of (iii). Let us assume that d ≥ 2 and that
∑

v∈D d αv ∂pv ∈ M. By (2.4.7), we have for
each b ∈ B dd that

1

b

∑

v∈D d : bvd=b

xv∂pv =
∑

v∈D d : bvd=b

xv
bvd

∂pv ∈M .

17



2.4. THE NEIGHBORS OF ONE CONTROLLABLE PARTICLE

Taking the double commutator with
∑

v∈D d αv ∂pv and summing over all b ∈ B dd shows that

U ≡
∑

v∈D d

αv
bvd

∂pv ∈M .

Since we assume here d ≥ 2, we have Z ≡∑v∈T
(
∂ d−2f̃v

)
(xv)∂pv ∈M. But then,

q
U : Z

y
=
∑

v∈T

αv
bvd

(
∂ d−1f̃v

)
(xv)∂pv =

∑

v∈D d

αv
bvd

(bv,d−1 + bvd xv) ∂pv

is also inM. Recalling that bv,d−1 = 0 for all v ∈ D d, we obtain (2.4.9). Finally (2.4.10) follows
from (2.4.9) and the double commutator

q ∑

v∈D d
αv xv ∂pv :

∑

v∈D d
βv ∂pv

y
=
∑

v∈D d
αv βv ∂pv .

This completes the proof.

With these preparations, we can now prove Theorem 2.4.3.

Proof of Theorem 2.4.3. We distinguish the cases d = 1 and d ≥ 2.
Case d = 1: This case is easy. Since all the f̃v have degree 1, we have that f̃v(xv) = bv1 xv for
all v ∈ T , with bv1 6= 0. Consequently, the sets Ti consist of those v which have the same bv1 (see
Remark 2.4.8). Thus, we have by (2.4.7) that for each Ti:

∑

v∈Ti

∂pv ∈M and
∑

v∈Ti

xv∂pv ∈M (if d = 1) . (2.4.12)

This shows that the conclusion of Theorem 2.4.3 holds when d = 1.
Case d ≥ 2: In this case, (2.4.7) is not enough. First, (2.4.7) says nothing about the masses v ∈ T \D d,
for which bvd = 0. And second, (2.4.7) provides us with no way to “split” the ∂pv corresponding to
a common (non-zero) value b of bvd, even though the corresponding v might be inequivalent due to
some bvk with k < d. To fully make use of these coefficients, we must develop some more advanced
machinery.

Definition 2.4.15. We denote by Pd the vector space of real polynomials in one variable of degree at
most d. We consider the operator G : Pd → Pd defined by

(Gv)(x) ≡ (x · v(x))′ ,

and we introduce the set of operators

F ≡ span{G,G2, . . . ,Gd+1} .

18



CHAPTER 2. NETWORKS OF OSCILLATORS

Observe that by (2.4.4) and (2.4.8) we have
q∑

v∈T
f̃v(xv)∂pv :

∑

v∈D d
xv∂pv

y
=
∑

v∈D d
(Gf̃v)(xv)∂pv ∈M .

Note that we obtain a sum overD d only. By taking more double commutators with
∑

v∈D d xv∂pv , we
find that

∑
v∈D d(G

kf̃v)(xv)∂pv is inM for all k ≥ 1. Thus, by the linear structure ofM, we obtain

Lemma 2.4.16. For all P ∈ F , we have
∑

v∈D d
(Pf̃v)(xv)∂pv ∈M .

It is crucial to understand that it is the same operator P that is applied simultaneously to all the
components, and that the components in T \ D d are “projected out”.

We now show that some very useful operators are in F .

Proposition 2.4.17. The following hold:

(i) The projector

S` : Pd → Pd ,
d∑

i=0

bix
i/i! 7→ b`x

`/`!

belongs to F for all ` = 0, . . . , d.

(ii) The identity operator 1 acting on Pd is in F .

Proof. Consider the basis B = (e0, e1, . . . , ed) of Pd where ej(x) = xj/j! . Observe that for all
j ≥ 0 we have Gej = (j + 1)ej , so that G is diagonal in the basis B. Thus, Gk is represented by the
matrix diag(1k, 2k, . . . , (d+ 1)k) for all k ≥ 1. Consequently, for each ` ∈ {0, . . . , d}, there is by
Lemma 2.9.1 with s = 0 a linear combination of G,G2, . . . ,Gd+1 that is equal to S`. This proves (i).
Moreover, we have that

∑d
`=0 S` = 1, so that the proof of (ii) is complete.

Lemma 2.4.18. For all ` = 0, . . . , d, and for each b ∈ B d` = {bv` | v ∈ D d} we have
∑

v∈D d : bv`=b

∂pv ∈M . (2.4.13)

Proof. Let ` ∈ {0, 1, . . . , d}. Using Lemma 2.4.16 and Proposition 2.4.17(i) we find that the vector
field

∑
v∈D d(bv`x

`/`!)∂pv is inM. Using (2.4.5) repeatedly, we find that
∑

v∈D d bv`∂pv is inM.
Thus, by (2.4.10), ∑

v∈D d
biv`∂pv ∈M for all i ≥ 1.
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2.4. THE NEIGHBORS OF ONE CONTROLLABLE PARTICLE

Then, applying Lemma 2.9.1 to the set B d` \ {0} and with s = 0, we conclude that
∑

v∈D d : bv`=b

∂pv ∈M for all b ∈ B d` \ {0} . (2.4.14)

If 0 /∈ B d` , we are done. Else, we obtain that (2.4.13) holds also for b = 0 by summing the vector field
(2.4.14) over all b ∈ B d` \ {0} and subtracting the result from

∑
v∈D d ∂pv (which is inM by (2.4.8)).

This completes the proof.

Remember that by Remark 2.4.8, a given equivalence class Ti is either a subset ofD d or completely
disjoint from it.

Lemma 2.4.19. Let Ti be an equivalence class such that Ti ⊂ D d. Then
∑

v∈Ti

∂pv ∈M , and
∑

v∈Ti

xv ∂pv ∈M . (2.4.15)

Proof. All the polynomials f̃v, v ∈ Ti are equal. Thus, there are coefficients c` ∈ B d` , ` = 0, 1, . . . , d

such that

Ti =
d⋂

`=0

{v ∈ D d | bv` = c`} . (2.4.16)

By Lemma 2.4.18, we have for all ` = 0, . . . , d that
∑

v∈D d : bv`=c`

∂pv ∈M . (2.4.17)

Now observe that whenever two setsB,B′ ⊂ D d are such that
∑

v∈B ∂pv ∈M and
∑

v∈B′ ∂pv ∈M,
we have by (2.4.10) that

∑
v∈B∩B′ ∂pv ∈M. Applying this recursively to the intersection in (2.4.16)

and using (2.4.17) shows that
∑

v∈Ti ∂pv ∈M. Using now (2.4.9) implies that
∑

v∈Ti xv∂pv ∈M,
which completes the proof.

With these tools, we are now ready to complete the proof of Theorem 2.4.3 (for the case d ≥ 2).
By Lemma 2.4.19, we are done if D d = T (i.e., if all the f̃v, v ∈ T have degree d). If this is not the
case, we proceed as follows.

Observe that Lemma 2.4.16 and Proposition 2.4.17(ii) imply that
∑

v∈D d f̃v(xv) ∂pv is inM.
Subtracting this from (2.4.4) shows that

∑

v∈T \D d
f̃v(xv)∂pv ∈M .

Thus, we can start the above procedure again with this new “smaller” vector field, each component
being a polynomial of degree at most

d′ ≡ max
v∈T \D d

dv ,
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CHAPTER 2. NETWORKS OF OSCILLATORS

with obviously d′ < d. Defining then D d′ = {v ∈ T | dv = d′}, we get as in Lemma 2.4.19 that
(2.4.15) holds for all Ti ⊂ D d′ . We then proceed like this inductively, dealing at each step with the
components of highest degree and “removing” them, until all the remaining components have the
same degree d− (which is equal to minv∈T dv). If d− ≥ 2 we obtain again as in Lemma 2.4.19 that
(2.4.15) holds for all Ti ⊂ D d− . And if d− = 1, the conclusion follows from (2.4.12). Thus, (2.4.15)
holds for every equivalence class Ti, regardless of the degree of the polynomials involved. The proof
of Theorem 2.4.3 is complete.

Remark 2.4.20. Our method also covers the case where each particle v ∈ V can have an ar-
bitrary positive mass mv. The proofs work the same way, if we replace the functions f̃v with
f̃v = V ′′cv(xv)/(mcmv). Thus, if for example all the V ′′cv, v ∈ T are the same, but all the particles
in T have distinct masses, then all the new f̃v are different, and the particles in T belong each to a
separate Ti.

2.5. Controlling a network

We now show how Theorem 2.4.3 can be used recursively to control a large class of networks. The
idea is very simple: at each step of the recursion, we apply Theorem 2.4.3 to a controllable particle
(or a set of such) in order to show that some neighboring vertices are also controllable. Starting this
procedure with the particles in V∗ (which are controllable by the definition ofM), we obtain under
certain conditions that the whole network is controllable.

In order to make the distinction clear, we will say that a particle c is a controller if it is controllable
and if we intend to use it as a starting point to control other particles.

Definition 2.5.1. Let J be the collection of jointly controllable sets (i.e., of sets A ⊂ V such that∑
v∈A ∂pv ∈M, and therefore also

∑
v∈A ∂qv by Lemma 2.3.1).

Obviously, a particle v is controllable iff {v} ∈ J . The next lemma shows what we “gain” in J
when we apply Theorem 2.4.3 to a controller c. Remember that the set T c of first neighbors of c is
partitioned into equivalence classes T ci , as discussed in §2.4.

Lemma 2.5.2. Let c ∈ V be a controller. Then,

(i) for all i,
T ci ∈ J ,

(ii) for all i and for all A ∈ J the sets

A ∩ T ci , A \ T ci and T ci \A (2.5.1)

are in J .

We illustrate some possibilities in Figure 2.1.
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c

(a)

c

(b)

c′

c′′

c

(c)

Figure 2.1 – a: A controller c and a few sets in J , shown as ovals. b: The equivalence classes T ci
are shown as rectangles. (Only the edges incident to c are shown.) c: New sets “appear” in J . In
particular, c′ and c′′ are controllable.

Proof. (i). This is an immediate consequence of (2.4.1) and the definition of J .

(ii). We consider an equivalence class T ci and a set A ∈ J . By (2.4.2) we find that

[
∑

v∈T ci

(qc − qv + δcv)∂pv ,
∑

v∈A
∂qv ] =

∑

v∈A∩T ci

∂pv − 1c∈A ·
∑

v∈T ci

∂pv

is inM. By the linear structure ofM and since
∑

v∈T ci
∂pv is inM by (2.4.1), we can discard the

second term and we find
∑

v∈A∩T ci
∂pv ∈ M. This proves that A ∩ T ci is in J . Then, subtracting∑

v∈A∩T ci
∂pv from

∑
v∈A ∂pv (resp. from

∑
v∈T ci

∂pv ) shows that
∑

v∈A\T ci
∂pv (resp.

∑
v∈T ci \A

∂pv )
is inM, which completes the proof of (ii).

We can now give an algorithm that applies Lemma 2.5.2 recursively, and that can be used to show
that a large variety of networks is controllable.

Proposition 2.5.3. Consider the following algorithm that builds step by step a collection of sets
W ⊂ J and a list of controllable particles K.

Start withW = {{v} | v ∈ V∗} and put (in any order) the vertices of V∗ in K.

1. Take the first unused controller c ∈ K.

2. Add each equivalence class T ci toW .

3. For each T ci and each A ∈ W add the sets of (2.5.1) toW .

4. If in 2. or 3. new singletons appear inW , add the corresponding vertices (in any order) at the
end of K.

5. Consider c as used. If there is an unused controller in K, start again at 1. Else, stop.

We have the following result: if in the end K contains all the vertices of V , then the network is
controllable.
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CHAPTER 2. NETWORKS OF OSCILLATORS

Proof. By Lemma 2.5.2, the collectionW remains at each step a subset of J , and K contains only
controllers. Thus, the result holds by construction.

The algorithm stops after at most |V| iterations, and one can show that the result does not depend
on the order in which we use the controllers. This algorithm is probably the easiest to implement, but
does not give much insight into what really makes a network controllable with our criteria. For this
reason, we now formulate a similar result in terms of equivalence with respect to a set of controllers,
which underlines the role of the “cooperation” of several controllers.

Definition 2.5.4. We consider a set C of controllers and denote by N (C) the set of first neighbors of
C that are not themselves in C. We say that two particles v, w ∈ N (C) are C-siblings if v and w are
connected to C in exactly the same way, i.e., if for every c ∈ C the edges {c, v} and {c, w} are either
both present or both absent.

Moreover, we say that v and w are C-equivalent if they are C-siblings, and if in addition, for each
c ∈ C that is linked to v and w, we have that v and w are equivalent with respect to c (i.e., there is a
δ ∈ R such that V ′′cv( · ) = V ′′cw( · + δ)).

The C-equivalence classes form a refinement of the sets of C-siblings, see Figure 2.2.

c1

c2

c3

v1

v2

v3

v4

v5

v6

(a) C-siblings

c1

c2

c3

v1

v2

v3

v4

v5

v6

(b) C-equivalence classes

Figure 2.2 – Illustration of Definition 2.5.4. We assume that all the springs are identical, except
for the edge {c1, v1}. The particles v1, . . . , v6 form 4 sets of C-siblings, with C = {c1, c2, c3}.
The one containing v1 and v2 is further split into two C-equivalence classes, since v1 and v2 are by
assumption inequivalent with respect to c1.

Proposition 2.5.5. Let C be a set of controllers. Then, for each C-equivalence class U ⊂ N (C), we
have U ∈ J .

Proof. See Figure 2.3. Let U = {v1, . . . , vn} ⊂ N (C) be a C-equivalence class. We denote by
c1, . . . , ck the controllers in C that are linked to v1, and therefore also to v2, . . . , vn, since the elements
of U are C-siblings. For each j ∈ {1, . . . , k}, there is a T cji with v1, . . . , vn ∈ T cji , and we define
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2.5. CONTROLLING A NETWORK

Sj ≡ T cji \ C. We consider the set

Û ≡
k⋂

j=1

Sj .

Clearly, U ⊂ Û , and Û ∈ J by Lemma 2.5.2. We have Û = {v1, . . . , vn, v
∗
1, . . . , v

∗
r}, where the v∗j

are those particles that are equivalent to v1, . . . , vn from the point of view of c1, . . . , ck, but that are
also connected to some controller(s) in C \ {c1, . . . , ck}. In particular, for each j ∈ {1, . . . , r}, there

is a c∗j ∈ C \ {c1, . . . , ck} and an i such that v∗j is in S∗j ≡ T
c∗j
i . By construction, S∗j ∩ U = ∅. Thus,

Û \
r⋃

j=1

S∗j = U .

Starting from Û ∈ J and removing one by one the S∗j , we find by Lemma 2.5.2(ii) that U is indeed
in J , as we claim.

c1

c2

c∗1

w

v1

v2

v∗1

Figure 2.3 – Illustration of the proof of Proposition 2.5.5 for identical springs. We consider the
C-equivalence class U = {v1, v2}, where C contains c1, c2, c∗1 and possibly other particles (not
shown) that are not linked to v1, v2. With the notation of the proof, we have S1 = {w, v1, v2, v∗1}
and S2 = {v1, v2, v∗1} so that Û = S1 ∩ S2 = {v1, v2, v∗1}. Since v∗1 belongs to S∗1 = {w, v∗1},
we find Û \ S∗1 = U .

An immediate consequence is

Corollary 2.5.6. Let C be a set of controllers. If a vertex v ∈ N (C) is alone in its C-equivalence
class, then it is controllable.

Applying this recursively, we obtain

Theorem 2.5.7. We start with C0 ≡ V∗. For each k ≥ 0, let

Ck+1 ≡ Ck ∪ {v ∈ N (Ck) | no other vertex in N (Ck) is Ck-equivalent to v} .

Then, if Ck = V for some k ≥ 0, the network is controllable.

Proof. By Corollary 2.5.6 we have that each Ck contains only controllers (remember also that V∗
contains only controllers by the definition ofM). Thus if Ck = V for some k ≥ 0 we find that all
vertices are controllers, which is what we claim.

24



CHAPTER 2. NETWORKS OF OSCILLATORS

2.6. Examples

In this section we illustrate by several examples the range of our controllability criteria.

Example 2.6.1. A single controller c can control several particles if the interaction potentials between
c and its neighbors have pairwise inequivalent second derivative. See Figure 2.4.

Vn

V3

V2

V1

c

v1

v2

v3

vn

...

Figure 2.4 – If no two springs are equivalent, the vi are controllable. Springs from the vi to other
particles or from one vi to another may exist but are not shown. They do not change the conclusion.

The example above does not use the topology of the network (i.e., the notion of siblings), but only
the inequivalence due to the second derivative of the potentials. We have the following immediate
generalization, which we formulate as

Theorem 2.6.2. Assume that G is connected, that V∗ is not empty, and that for each v ∈ V , the first
neighbors of v are all pairwise inequivalent with respect to v (i.e., no two distinct neighbors u,w of v
are such that V ′′vu( · ) = V ′′vw( · + δ) for some constant δ ∈ R). Then, the network is controllable.

Proof. We use Theorem 2.5.7. Observe that under these assumptions, we have at each step Ck+1 =

Ck ∪N (Ck). Thus, since the network is connected, there is indeed a k ≥ 0 such that Ck = V .

One can restate Theorem 2.6.2 as a genericity condition:

Corollary 2.6.3. Assume that G is connected, that V∗ is not empty, and that for each e ∈ E the degree
of the polynomial Ve is fixed (and is at least 3). Then, G is almost surely controllable if we pick
the coefficients of each Ve at random according to a probability law that is absolutely continuous
w.r.t. Lebesgue.

Example 2.6.4. The 1D chain (shown in Figure 2.5) is controllable. Our theory applies when the
interactions are polynomials of degree at least 3; for a somewhat different variant, see [23]. To apply
our criteria, we start with C = {c}. Clearly, v1 is alone in its C-equivalence class, and is therefore
controllable by Corollary 2.5.6. We then take C ′ = {c, v1}. Since v2 is alone in its C ′-equivalence
class, it is also controllable. Continuing like this, we find that the whole chain is controllable.

Observe that the chain described in the example above is controllable whether some pairs of
springs are equivalent or not. There are in fact many networks that are controllable thanks to their
topology alone, regardless of the potentials. In particular, we have
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c
v1 v2 v3 v4 v5

Figure 2.5 – A one-dimensional chain.

Example 2.6.5 (Physically relevant networks). We consider the network in Figure 2.6(a) and we start
with C = {c1, . . . , c4} (i.e., we assume that the vertices in the first column are controllers). Since
no two vertices in the second column are C-siblings, they each belong to a distinct C-equivalence
class, and therefore by Corollary 2.5.6 they are controllable (regardless of the potentials). Let us now
denote by C ′ the set of all vertices in the first two columns, which are controllable as we have just
seen. Repeating the argument above, we obtain that the vertices in the third column are controllable.
Continuing like this, we gain control of the whole network. In the same way, one also easily obtains
that the networks in Figure 2.6(b-d) are controllable thanks to their topology alone.

c1

c2

c3

c4

(a)

c1

c2

c3

c4

(b)

c3

c2

c1

(c)

c2

c3

c1

(d)

Figure 2.6 – Four networks that are controllable by their topology alone, regardless of the potentials
(as long as they are polynomials of degree at least 3).

2.7. Limitations and extensions

Our theory is local in the sense that the central tool (Theorem 2.4.3) involves only a controller and its
first neighbors. When we “walk through the graph,” starting from V∗ and taking at each step control of
more particles, we only look at the interaction potentials that involve the particles we already control
and their first neighbors. We never look “farther” in the graph. This makes our criteria quite easy to
apply, but this is also the main limitation of our theory, as illustrated in
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Example 2.7.1. We consider the network shown in Figure 2.7, where c is a controller. If V ′′cv1 and
V ′′cv3 are equivalent, then our theory fails to say anything about the controllability of the network. In
order to draw any conclusion, one has to look at “what comes next” in the network. Of course, if the
lower branch is an exact copy of the upper one (i.e., if the interaction and pinning potentials are the
same), then the network is truly uncontrollable, and this is obvious for symmetry reasons. However,
without such an “unfortunate” symmetry, the network may still be controllable. Indeed, by the study
above, we know that the vector field Y ≡ ∂qv1 +∂qv3 is inM. By commuting with X0 and subtracting
some contributions already inM, one easily obtains that the vector field

U ′′v1∂pv1 + U ′′v3∂pv3 + V ′′v1v2 · (∂pv1 − ∂pv2 ) + V ′′v3v4 · (∂pv3 − ∂pv4 )

is in M. Observe that now the pinning potentials Uv1 and Uv3 as well as the interaction po-
tentials Vv1v2 and Vv3v4 come into play. Taking first commutators with Y and then taking dou-
ble commutators among the obtained vector fields, one obtains further vector fields of the form∑4

i=1 gi(qv1 , qv2 , qv3 , qv4)∂pvi , where the gi involve derivatives and products of the potentials men-
tioned above. In many cases, these are enough to prove that the network in Figure 2.7 is controllable,
even though our theory fails to say so.

Vcv1

Vcv3
Vv3v4

Vv1v2

c

v1

v3 v4

v2

Figure 2.7 – The network used in Example 2.7.1. If Vcv3 is equivalent to Vcv1 our theory does not
allow to conclude, but the network might still be controllable.

One question that might arise is: why does only the second derivative of the interaction potentials
enter the theory? The next example shows that this issue is related to the notion of locality mentioned
above.

Example 2.7.2. We consider the network in Figure 2.8, where c is a controller. We study the case
where

Vcv(qc − qv) = (qc − qv)4, Uv(qv) = q6
v ,

Vcw(qc − qw) = (qc − qw)4 + a · (qc − qw), Uw(qw) = q6
w + b · qw ,

for some constants a and b. The terms in a and b act as constant forces on c and w. Since V ′′cv ∼ V ′′cw,
the particles v and w are equivalent with respect to c by our definition. Thus, our theory fails to say
anything. We seem to be missing the fact that when a 6= 0, the particles v and w can be told apart
due to the first derivative of the potentials. However, having a 6= 0 is not enough; the controllability
of the network also depends on b. Indeed, if a = b, the vector field X0 is symmetric in v and w, and
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therefore the network is genuinely uncontrollable. If now a 6= b, we have checked, by following a
different strategy of taking commutators, that the network is controllable. Consequently, when two
potentials have equivalent second derivative, but inequivalent first derivative, no conclusion can be
drawn in general without knowing more about the network (here, it is one of the pinning potentials,
but in more complex situations, it can be some subsequent springs).

Vcv

Vcw

c

v

w

Figure 2.8 – The network discussed in Example 2.7.2.

Our theory applies only to strictly anharmonic systems, since we assume that the interaction
potentials have degree at least 3. The next example shows what can go wrong if we drop this
assumption. Again, this is related to the locality of our criteria.

Example 2.7.3. We consider the harmonic system shown in Figure 2.9. The vertex c is a controller,
and all the pinning potentials are equal and harmonic, i.e., of the form λx2/2. The interaction
potentials are also harmonic. The spring {c, v1} has coupling constant 2, the springs {c, v2} and
{v2, v3} have coupling constant 1 and the spring {v3, v4} has coupling k > 0. Since V ′′cv1 ≡ 2 and
V ′′cv2 ≡ 1, the particles v1 and v2 are inequivalent with respect to c. Yet, this is not enough to obtain
that they are controllable (unlike in the strictly anharmonic case covered by our theory). With standard
methods for harmonic systems, it can be shown that the network is controllable iff k 6= 2. When k = 2,
one of the eigenmodes decouples from the controller c, and no particle except c is controllable. Thus,
one cannot obtain that v1 and v2 are controllable without knowing more about the potentials that
come farther in the graph.

2

1
1 k

c

v1

v2 v3 v4

Figure 2.9 – A harmonic network that may or may not be controllable depending on the value of
the coupling constant k.

Remark 2.7.4. As presented here, our method only works when the motion of each particle is 1D. To
some extent, our results can be generalized to higher dimensions. For example, one can check that in
any dimension r ≥ 1, the network of Figure 2.4 with potentials Vk(xk) = ak (x2

k,1 + · · ·+ x2
k,r)

2 ,
k = 1, . . . , n, is controllable when the ak are all distinct and non-zero. But for generic polynomial
potentials, the situation is more complicated: taking multiple commutators does not always lead to
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CHAPTER 2. NETWORKS OF OSCILLATORS

tractable expressions (in particular, we do not have the nice form (2.4.6) for double commutators
anymore). Further research is needed to find an adequate method for general higher dimensional
problems. For some networks with special topology (such as the one in Figure 2.6(a) but not the
ones in Figure 2.6(b-d)), simple conditions can be found for controllability, even for non-polynomial
potentials (see [21]).

2.8. Comparison with other commutator techniques

It is perhaps useful to compare the techniques used in this paper to those used elsewhere: To unify
notation, we consider the hypoellipticity problem in the classical form

L = X0 +
∑

i>0

X2
i .

In [23], the authors considered a chain, so that V∗ is just the first and the last particle in the chain.
Starting with ∂p1 (the left end of the chain) one then forms (with simplified notation, which glosses
over details which can be found in that paper)

∂q1 = [∂p1 , X0] , ∂p2 = (M1,2)−1[∂q1 , X0] , ∂q2 = [∂p2 , X0] ,

and so on, going through the chain. Here, the particles are allowed to move in several dimensions, and
Mj,j+1 is basically the Hessian matrix of Vj,j+1. This technique requires that Mj,j+1 be invertible,
which implies some restrictions on the potentials.

Villani [56] uses another sequence of commutators:

C0 = {Xi}i>0 , Cj+1 = [Cj , X0] + remainderj .

With this superficial notation, the current paper uses again a walk through the network, but the
basic step involves double commutators of the form

q
Z1 : Z2

y

with Zi typically of the form
∑
gv(xv)∂pv , where we use abundantly that the Ve are polynomials.

This allows for the “fanning out” of Figure 2.4 and is at the basis of our ability to control very general
networks. In particular, this shows that networks with variable cross-section can be controlled.

2.9. Appendix: Vandermonde determinants

Lemma 2.9.1. Let c1, . . . , cn ∈ R be distinct and non-zero, and let s ≥ 0. Then, for all k ∈
{1, . . . , n} there are constants r1, . . . , rn ∈ R such that for all j = 1, . . . , n,

n∑

i=1

ri c
i+s
j = δjk .
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2.9. APPENDIX: VANDERMONDE DETERMINANTS

Proof. We have that the Vandermonde determinant
∣∣∣∣∣∣∣∣∣

cs+1
1 cs+2

1 · · · cs+n1

cs+1
2 cs+2

2 · · · cs+n2
...

...
cs+1
n cs+2

n · · · cs+nn

∣∣∣∣∣∣∣∣∣
=

(
n∏

i=1

cs+1
i

)
∣∣∣∣∣∣∣∣∣

1 c1 c2
1 · · · cn−1

1

1 c2 c2
2 · · · cn−1

2
...

...
...

1 cn c2
n · · · cn−1

n

∣∣∣∣∣∣∣∣∣
=

n∏

i=1

cs+1
i

n∏

j=i+1

(cj − ci)

is non-zero under our assumptions. Thus, the columns of this matrix form a basis of Rn, which proves
the lemma.
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3. Chains of three rotors

We reproduce here [13]. The main result was obtained independently by Christophe Poquet and
myself. Fortunately, we were made aware of this early enough, and decided to write [13] together.
The only addition in this chapter compared to [13] is the discussion about the lower bound in §3.7.

Non-equilibrium steady state and subgeometric ergodicity
for a chain of three coupled rotors
with Jean-Pierre Eckmann and Christophe Poquet

Nonlinearity 28 (2015), 2397–2421

Abstract

We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The
temperatures of the two baths can be different, and we allow some constant torque to be applied
at each end of the chain. Under some non-degeneracy condition on the interaction potentials,
we show that the process admits a unique invariant probability measure, and that it is ergodic
with a stretched exponential rate. The interesting issue is to estimate the rate at which the energy
of the middle rotor decreases. As it is not directly connected to the heat baths, its energy can
only be dissipated through the two outer rotors. But when the middle rotor spins very rapidly,
it fails to interact effectively with its neighbours due to the rapid oscillations of the forces. By
averaging techniques, we obtain an effective dynamics for the middle rotor, which then enables
us to find a Lyapunov function. This and an irreducibility argument give the desired result. We
finally illustrate numerically some properties of the non-equilibrium steady state.

3.1. Introduction

Hamiltonian chains of mechanical oscillators have been studied for a long time. Several models
describe a linear chain of masses, with polynomial interaction potentials between adjacent masses, and
pinning potentials which tie the masses down in the laboratory frame. Under the assumption that the
interaction is stronger than the pinning, it was shown in [23] that the model has an invariant probability
measure when the chain is attached at each extremity to two heat baths at different temperatures. That
paper, and later developments, see e.g., [19], relied on analytic arguments, showing in particular that
the infinitesimal generator has compact resolvent in a suitable function space.

Two elements were added later in the paper [50]: First, the authors used a more probabilistic
approach, based on Harris recurrence as developed by Meyn and Tweedie [43]. Second, a detailed
analysis allowed them to understand the transfer of energy from the central oscillators to the (dissi-
pative) baths. In that case the convergence to the stationary state is of exponential rate. In [9], this
reasoning was extended to more general contexts.

The dynamics of the chain is very different when the pinning potential is stronger than the
interaction potential. In that case the chain may have breathers, i.e., oscillators concentrating a lot of
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3.1. INTRODUCTION

energy, which is transferred only very slowly to their neighbours. This may lead to subexponential
ergodicity, as shown by Hairer and Mattingly [34] in the case of a chain of 3 oscillators with strong
pinning.

q1 q2 q3

T1 T3

τ1 τ3

Figure 3.1 – A chain of three rotors with two external torques τ1 and τ3 and two heat baths at
temperatures T1 and T3.

In this paper, we discuss a model with three rotors (see Figure 3.1), each given by an angle
qi ∈ T = R/2πZ and a momentum pi ∈ R, i = 1, 2, 3. The phase space is therefore Ω = T3 × R3,
and we will consider the measure space (Ω,B), where B is the Borel σ-field over Ω. We will denote
the points of Ω by x = (q, p) with q = (q1, q2, q3) and p = (p1, p2, p3).

We introduce the Hamiltonian

H(q, p) =

3∑

i=1

(
1

2
p2
i + Ui(qi)

)
+
∑

b=1,3

Wb(q2 − qb) ,

with some smooth interaction potentials Wb : T→ R, b = 1, 3, and some smooth pinning potentials
Ui : T → R, i = 1, 2, 3. We now let the two outer rotors (i.e., the rotors 1 and 3) interact with
Langevin-type heat baths at temperatures T1, T3 > 0, and with coupling constants γ1, γ3 > 0.
Moreover, we apply some constant (possibly zero) external forces τ1 and τ3 to the two outer rotors.
Introducing wb = W ′b and ui = U ′i , we obtain the system of SDE:

dqi(t) = pi(t) dt , i = 1, 2, 3 ,

dp2(t) = −
∑

b=1,3

wb
(
q2(t)− qb(t)

)
dt− u2(q2(t)) dt ,

dpb(t) =
(
wb
(
q2(t)− qb(t)

)
+ τb − ub

(
qb(t)

)
− γbpb(t)

)
dt+

√
2γbTb dBb

t , b = 1, 3 ,

(3.1.1)

where B1 and B3 are standard independent Brownian motions.

Notation. In the sequel, the index b always refers to the rotors 1 and 3 at the boundaries of the chain,
and we write

∑
b instead of

∑
b=1,3.

Remark 3.1.1. Our model can be viewed as an extreme case of that studied in [34]. A key factor
in that paper is to realise how the frequency of one isolated pinned oscillator depends on its energy.
Indeed, for an isolated oscillator with Hamiltonian p2/2 + q2k/(2k), the frequency grows like the
energy to the power 1

2 − 1
2k . When k →∞, the exponent converges to 1

2 . In this limit, the pinning
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CHAPTER 3. CHAINS OF THREE ROTORS

potential formally becomes an infinite potential well, so that the variable q is constrained to a compact
interval. In our model, the position (angle) of a rotor lives in a compact space, and its frequency scales
like its momentum, i.e., like the square root of its energy. Therefore, we can view our rotor model as
some kind of “infinite pinning” limit.

We make the following non-degeneracy assumption (clearly satisfied for e.g., w1 = w3 = sin):

Assumption 3.1.2. There is at least one b ∈ {1, 3} such that for each s ∈ T, at least one of the
derivatives w(k)

b (s), k ≥ 1 is non-zero.

For all initial conditions x ∈ Ω and all times t ≥ 0, we denote by P t(x, · ) the transition
probability of the Markov process associated to (3.1.1). Since the coefficients of the SDE (3.1.1) are
globally Lipschitz, the solutions are almost surely defined for all times and all initial conditions, so
that P t(x, · ) is well-defined as a probability measure on (Ω,B).

We now introduce the main theorem, in which we write

‖ν‖f = sup
|h|≤f

∫

Ω
hdν

for any continuous function f > 0 on Ω and any signed measure ν on (Ω,B).

Theorem 3.1.3. Under Assumption 3.1.2, the following holds for the Markov process defined by
(3.1.1):

(i) The transition kernel P t has a density pt(x, y) in C∞((0,∞)× Ω× Ω).

(ii) The process admits a unique invariant measure π, which has a smooth density.

(iii) For all sufficiently small β > 0 and all β′ ∈ [0, β), there are constants C, λ > 0 such that for
all t ≥ 0 and all x = (q1, q2, . . . , p3) ∈ Ω,

‖P t(x, · )− π‖eβ′H ≤ C(1 + p2
2)eβH(x)e−λt

1/2
.

Remark 3.1.4. If both heat baths are at the same temperature, say, T1 = T3 = T > 0, and the forces
τ1 and τ3 are zero, then the system is at thermal equilibrium and the Gibbs measure with density
proportional to e−H/T is invariant. Indeed, one easily checks that this density verifies the stationary
Fokker-Planck equation L∗e−H/T = 0, where L∗ is the formal adjoint of the generator L introduced
below.

Remark 3.1.5. In fact, the results we prove here apply with hardly any modification to the “star”
configuration with one central rotor interacting with m external rotors, which in turn are coupled to
heat baths (i.e., m+ 1 rotors and m heat baths). In addition, some studies (e.g., [37]) consider chains
with fixed boundary conditions. For the left end of the chain, this corresponds to adding a “dummy”
rotor 0 which does not move but interacts with rotor 1. This is covered by our theory by adding some
contribution to the pinning potential U1. The same applies to the right end and U3.
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Chains of rotors provide toy models for the study of non-equilibrium statistical mechanics. In [37]
long chains have been studied numerically, and it appears that even when the external temperatures
are different and external forces are applied, local thermal equilibrium is satisfied in the stationary
state in the limit of infinitely long chains. This stationary state may have some surprising features, like
a large amount of energy in the bulk of the chain when the boundary conditions are properly chosen.
In our case of course we are far from local thermal equilibrium, since we only study systems made of
three rotors. We will present some numerical simulations of our system in §3.6, highlighting some
interesting properties of the stationary state.

What corresponds here to the breathers observed in other models is the situation where the energy
of the system is very large and mostly concentrated in the middle rotor. The middle rotor then spins
very rapidly, and the interaction forces oscillate so fast that they have very little net effect. In this case,
the middle rotor effectively decouples from the rest of the system, and the main difficulty is to show
that its energy eventually decreases with some well-controlled bounds.

The idea used in [34] for the chain of three pinned oscillators is to average the oscillatory forces,
and exhibit a negative feedback in the regime where the breather dominates the dynamics. The proof
of Theorem 3.1.3 in the present paper is based on a systematisation of this idea, as explained in §3.3.4.

The paper is structured as follows: In §3.2 we introduce a sufficient condition for subgeometric
ergodicity from [16]. In §3.3 we study the behaviour of the middle rotor. In §3.4 we show how to use
the study of p2 to get a Lyapunov function. In §3.5 we provide the necessary technical input to the
theorem of [16]. Finally, we illustrate numerically some properties of the non-equilibrium steady state
in §3.6.

3.2. Ergodicity and Lyapunov functions

The proof of Theorem 3.1.3 relies on the results of [16] which in turn are based on the theory exposed
in [43]. The theory of [43] shows that one can prove the ergodicity of an irreducible Markov process
and estimate the rate of convergence toward its invariant measure if one has a good control of the
return times of the process to particular sets, called petite sets. A set K is petite if there exist a
probability measure a on [0,∞) and a non-zero measure νa on Ω such that for all x ∈ K one has∫∞

0 P t(x, · )a(dt) ≥ νa( · ). In the case we are interested in, control arguments and the hypoellipticity
of the generator imply that each compact set is petite (see §3.5.1 for a proof of this property).

Let L be the infinitesimal generator of the process, i.e., the second-order differential operator

L =
3∑

i=1

(pi∂qi − ui(qi)∂pi) +
∑

b

[wb(q2 − qb)(∂pb − ∂p2) + τb∂pb − γbpb∂pb + γbTb∂
2
pb

] .

Recall that for any sufficiently regular function f we have Lf(x) = d
dt

[∫
f(y)Pt(x,dy)

]∣∣
t=0

.
A classical way to control the return times to a petite set is to make use of Lyapunov functions.

We call Lyapunov function a smooth function V : Ω 7→ [1,∞) with compact level sets (i.e., due to the
structure of Ω, a function such that V (q, p)→∞ when ‖p‖ → ∞) such that for all x ∈ Ω,

(LV )(x) ≤ C1K(x)− ϕ ◦ V (x) , (3.2.1)
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where C is a constant, ϕ : [1,∞) → (0,∞) is an increasing function, and K is a petite set. If
one can find such a function, and prove that some skeleton P∆(∆ > 0) is µ-irreducible for some
measure µ (i.e., µ(A) > 0 implies that for all x ∈ Ω there exists k ∈ N such that P k∆(x,A) > 0),
then the Markov process is ergodic, with rate depending on ϕ. In the case where ϕ(V ) ∝ V ρ, the
convergence is geometric if ρ = 1 and polynomial if ρ < 1 (see [16, 44]). In this paper, we obtain
ϕ(V ) ∼ V/ log V .

We rely on the work of Douc, Fort and Guillin [16], which gives a sufficient condition for
subgeometric ergodicity of continuous-time Markov processes. We give here a simplified version of
their result, adapted to our purpose. This statement is based on Theorem 3.2 and Theorem 3.4 of [16].

Theorem 3.2.1 (Douc-Fort-Guillin (2009)). Assume that the process has an irreducible skeleton and
that there exist a smooth function V : Ω→ [1,∞) with V (q, p)→∞ when ‖p‖ → ∞, an increasing,
differentiable, concave function ϕ : [1,∞) → (0,∞), a petite set K, and a constant C such that
(3.2.1) holds. Then the process admits a unique invariant measure π, and for each z ∈ [0, 1], there
exists a constant C ′ such that for all t ≥ 0 and all x ∈ Ω,

‖P t(x, · )− π‖(ϕ◦V )z ≤ g(t)C ′V (x) ,

where g(t) = (ϕ ◦H−1
ϕ (t))z−1, with Hϕ(u) =

∫ u
1

ds
ϕ(s) .

When z = 0, we retrieve the total variation norm ‖P t(x, · ) − π‖TV and the rate is the fastest.
Increasing z strengthens the norm but slows the convergence rate down. When z = 1, the norm is the
strongest, but no convergence is guaranteed since g(t) ≡ 1.

The core of the paper is devoted to the construction of a Lyapunov function such that (3.2.1)
is satisfied with ϕ(s) ∼ s/ log s, and a set K which is compact and therefore petite. This yields a
stretched exponential convergence rate (see (3.2.4)). The existence of an irreducible skeleton required
by Theorem 3.2.1 and the fact that every compact set is petite are proved in §3.5.

One might at first think that a Lyapunov function is simply given by the Hamiltonian H . Unfortu-
nately, this is not the case, as

LH =
∑

b

(
τbpb + γb(Tb − p2

b)
)
, (3.2.2)

where the right-hand side remains positive when p1, p3 are small and p2 → ∞. Thus, there is no
bound of the form (3.2.1) for H . The same problem occurs if we take any function f(H) of the
energy.

In order to find a bona fide Lyapunov function, we will need more insight into how fast all three
momenta decrease. The equality (3.2.2) suggests that p1 and p3 will not cause any problem. In fact,
we have for b = 1, 3, that

Lpb = −γbpb + wb(q2 − qb)− ub(qb) + τb .

Since wb(q2− qb)−ub(qb) + τb is bounded, |pb| essentially decays at exponential rate when it is large.
This is of course due to the friction terms that act on p1 and p3 directly. Such a result does not hold
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for p2. In fact, the decay of p2 is much slower. Our main insight is that in a sense

Lp2 ∼ −cp−3
2 .

The proof of such a relation occupies a major part of this paper. As indicated earlier, this very slow
damping of p2 comes from the lack of effective interaction when the forces oscillate very rapidly.
Once we have gained enough understanding of the dynamics of p2, we will be able to construct a
Lyapunov function, whose properties are summarised in

Proposition 3.2.2. For all sufficiently small β > 0, there is a function V : Ω→ [1,∞) satisfying the
two following properties:

1. There are positive constants c1, c2 such that

1 + c1e
βH ≤ V ≤ c2(1 + p2

2)eβH .

2. There are positive constants c3, c4 and a compact set K such that

LV ≤ c31K − ϕ(V ) ,

where ϕ : [1,∞)→ (0,∞) is defined by1

ϕ(s) =
c4 s

2 + log(s)
. (3.2.3)

The way we construct the Lyapunov function is somewhat different from that of [34]. There, it is
obtained starting from some power of the Hamiltonian and then adding corrections by an averaging
technique similar to ours (see Remark 3.3.8). Here, we first average the dynamics of p2 and then use
the result to construct a Lyapunov function that essentially grows exponentially with the energy. This
gives a stretched exponential rate of convergence instead of a polynomial rate as in [34]. The present
method can in principle be applied to the model of [34] (see also [33]).

We now show how the main results follows.

Proof of Theorem 3.1.3. The conclusions of Theorem 3.1.3 immediately follow from Theorem 3.2.1,
Proposition 3.2.2, the technical results stated in Proposition 3.5.1, and the following two observations.
Consider 0 ≤ β′ < β and choose z ∈ (0, 1) such that β′ < zβ. First, the function ϕ defined in (3.2.3)
yields, in the notation of Theorem 3.2.1, a convergence rate

g(t) = (ϕ ◦H−1
ϕ (t))z−1 ≤ ce−λt1/2 (3.2.4)

for some c, λ > 0. Indeed, we have Hϕ(u) = 1
c4

∫ u
1

2+log s
s ds = 1

2c4
(log u)2 + 2

c4
log u, so that

H−1
ϕ (t) = exp((2c4t+ 4)1/2 − 2) and (ϕ ◦ H−1

ϕ (t)) = (2c4t + 4)−1/2 exp((2c4t + 4)1/2 − 2) ≥
CeC

′t1/2 for some C,C ′ > 0. Thus, (3.2.4) holds with λ = (1− z)C ′. Secondly, by Proposition 3.2.2

1The 2 in the denominator ensures that ϕ is concave and increasing on [1,∞), as required in Theorem 3.2.1.
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(i), and since β′ < zβ, we observe that eβ
′H ≤ c(ϕ ◦ V )z for some constant c > 0, so that

‖ · ‖eβ′H ≤ c ‖ · ‖(ϕ◦V )z .

3.3. Effective dynamics for the middle rotor

The hardest and most interesting part of the problem is to determine how p2 decreases when it is very
large.2 In this section, we obtain some asymptotic, effective dynamics for p2 when p2 →∞.

3.3.1. Expected rate

Before we start making any proof, we can get a hint of how p2 decreases in the regime where p2 is
very large and both p1, p3 are small. Assume for simplicity that ui ≡ 0 and that Wb(s) = −κ cos(s)

so that wb(s) = κ sin(s). In the regime of interest, we expect the middle rotor to decouple, so that
p2 will evolve very slowly. We will consider the system over times that are small enough for p2 to
remain almost constant (say equal to ω), but large enough for some “quasi-stationary” regime to be
reached. The reader can think of ω as being the “initial” value of p2. For b = 1, 3, we expect pb to be
well approximated, at least qualitatively, by the equation

dpb = κ sin(ωt) dt− γbpb dt+
√

2γbTb dBb
t ,

whose solution is

pb(t) = κ
γb sin(ωt)− ω cos(ωt)

γ2
b + ω2

+
√

2γbTb

∫ t

0
eγb(s−t)dBb

s

= −κ cos(ωt)

ω
+
√

2γbTb

∫ t

0
eγb(s−t)dBb

s +O
(

1

ω2

)
.

We have neglected the exponentially decaying part pb(0)e−γbt since we assume that a quasi-stationary
regime is reached. By (3.2.2), the rate of energy flowing into of the system at b is γb(Tb − p2

b).
Squaring pb and taking expectations, what remains is

Ep2
b(t) = κ2 cos2(ωt)

ω2
+ 2γbTbE

(∫ t

0
eγb(s−t)dBb

s

)2

+O
(

1

ω3

)

= κ2 cos2(ωt)

ω2
+ (1− e−2γbt)Tb +O

(
1

ω3

)
,

where we have used the Itō isometry E(
∫ t

0 e
γb(s−t)dBb

s)
2 =

∫ t
0 e

2γb(s−t)ds. Neglecting again an
exponentially decaying term, we obtain

d

dt
EH(t) =

∑

b

E
(
γb(Tb − p2

b(t))
)
∼ −

∑

b

γbκ2 cos2(ωt)

ω2
. (3.3.1)

2To simplify notation, we say p2 is large, but we always really mean that |p2| is large.

37



3.3. EFFECTIVE DYNAMICS FOR THE MIDDLE ROTOR

Since cos2(ωt) oscillates very rapidly around its average 1/2, we expect to see an effective contribution
−γκ2

2ω2 . This approximation was obtained by assuming that p2 is almost constant and equal to ω. Now,
when p2 is very large, the energy H is dominated by the contribution 1

2p
2
2, so that we expect to have

d
dtEH ∼ p2

d
dtEp2. Comparison with (3.3.1) leads to

d

dt
Ep2 ∼ −

1

p3
2

∑

b

γbκ2

2
.

We will obtain this result rigorously in Proposition 3.3.4.

3.3.2. Notations

Let Ω† = {(q, p) ∈ Ω : p2 6= 0}. We denote throughout by Xt = (q(t), p(t)) the solution of the
stochastic differential equation (3.1.1) with initial condition X0 = (q(0), p(0)). For now, we restrict
ourselves to X0 ∈ Ω† since we aim to obtain an effective dynamics for the middle rotor by performing
an expansion in negative powers of p2. Remark that since d

dtp2 is bounded, there is for each initial
condition X0 ∈ Ω† a deterministic time t∗ > 0 (proportional to |p2(0)|) such that Xt ∈ Ω† for all
t ∈ [0, t∗) and all realisations of the random noises. To define a smooth Lyapunov function on the
whole space Ω we will perform a regularisation in §3.4.

Definition 3.3.1. We let U be the set of stochastic processes ut which are solutions of an SDE of the
form

dut = f1(Xt)dt+ f2(Xt)dB
1
t + f3(Xt)dB

3
t , (3.3.2)

for some functions fi : Ω→ R.

Notation: In the sequel, we write

dut = f1dt+ f2dB1
t + f3dB3

t

instead of (3.3.2).
For any smooth function h on Ω, the stochastic process h(Xt) is in U by the Itō formula (see

below). Without further mention, we will both see h as a function on Ω and as the stochastic process
h(Xt). When referring to the stochastic process, we shall write simply dh instead of dh(Xt). Of
course, only very few processes in U can be written in the form h(Xt) for some function h on Ω.

The variables p2 and q2 will play a special role, as we are merely interested in the regime where
p2 is very large. For any function f over Ω we call the quantity

〈f〉 =
1

2π

∫ 2π

0
f dq2

the q2-average of f (or simply the average of f ), which is a function of p, q1 and q3 only.

Assumption 3.3.2. We assume

〈U2〉 = 0 and 〈Wb〉 = 0, b = 1, 3 .
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This assumption merely fixes the additive constants of the potentials and therefore results in no
loss of generality.

For conciseness, we shall omit the arguments of the potentials and forces, always assuming that

Wb = Wb(q2 − qb) , wb = wb(q2 − qb) , b = 1, 3 ,

Ui = Ui(qi) , ui = ui(qi) , i = 1, 2, 3 .

To simplify the notations, we also introduce the potentials Φ1, Φ2, Φ3 associated to the three
rotors, and the corresponding forces ϕ1, ϕ2, ϕ3 defined by

Φb = Wb + Ub , ϕb = −∂qbΦb = wb − ub , b = 1, 3 ,

Φ2 = W1 +W3 + U2 , ϕ2 = −∂q2Φ2 = −w1 − w3 − u2 . (3.3.3)

Of course, Φi and ϕi are functions of q only. With these notations the dynamics reads more concisely

dqi = pi dt , i = 1, 2, 3 ,

dp2 = ϕ2 dt ,

dpb =
(
ϕb + τb − γbpb

)
dt+

√
2γbTb dBb

t , b = 1, 3 .

We will mainly deal with functions of the form p`2p
n
1p

m
3 g(q) and their linear combinations. We

therefore introduce the notion of degree.

Definition 3.3.3. We say that a function f on Ω† has degree ` ∈ Z if it can be written as a finite sum
of elements of the kind p`2p

n
1p

m
3 g(q) for some n,m ∈ N and a smooth function g : T3 → R. Moreover,

we denote
Ô(p`2)

a generic expression of order at most ` (which can vary from line to line), i.e., a finite sum of functions
of degree `, `− 1, `− 2,. . . .

We have by the Itō formula that for any smooth function f on Ω

df =
3∑

i=1

(
∂f

∂qi
dqi +

∂f

∂pi
dpi

)
+
∑

b

γbTb
∂2f

∂p2
b

dt

= d+f + d0f + d−f ,

where

d+f = p2
∂f

∂q2
dt ,

d−f = ϕ2
∂f

∂p2
dt ,

d0f =
∑

b

(
pb
∂f

∂qb
+ (ϕb + τb − γbpb)

∂f

∂pb
+ γbTb

∂2f

∂p2
b

)
dt+

∑

b

√
2γbTb

∂f

∂pb
dBb

t .

(3.3.4)
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(By the discussion following Definition 3.3.1, f , its partial derivatives, p2 and the functions ϕi in this
SDE are evaluated on the trajectory Xt.) Observe that when acting on a function of degree `, the
contribution d+ increases the degree of p2 by one, while d0 and d− respectively leave it unchanged
and decrease it by one. In this sense, we will see d+ as the “dominant” part of d.

3.3.3. General idea

In this section we introduce the main idea, which consists in successively removing oscillatory terms
order by order in the dynamics of p2. We perform here the first step of the method in a somewhat
naive, but pedestrian way. In the next two sections, we systematise the method and apply it.

We begin by looking at the equation

dp2 = ϕ2 dt . (3.3.5)

When p2 is large while p1 and p3 are small, the right-hand side is highly oscillatory and its time-
average is almost zero, since 〈ϕ2〉 = 0. We will proceed to a change of variable in order to “see
through” this oscillatory term.

We first make the relation between the time-average and the q2-average more precise. Consider
some function g on Ω. In the regime where p2 is very large and p1, p3 are small, the only fast variable
is q2. Now consider some interval of time [0, T ] short enough so that the other variables do not change
significantly, but still large enough for q2 to swipe through [0, 2π) many times. We have in that case
q2(t) ∼ q2(0) + p2(0)t (remember that q2 is defined modulo 2π) and

g(q(t), p(t)) ∼ g
(
q1(0), q2(0) + p2(0)t, q3(0), p(0)

)
, (3.3.6)

so that the time-average of g is expected to be very close to the q2-average 〈g〉.
Now, we want to estimate p2(t) =

∫ t
0 ϕ2(q(s))ds in this situation. Approximating ϕ2 as in (3.3.6)

and integrating formally with respect to time (remember that ϕ2 = −∂q2Φ2) leads naturally to the
decomposition

p2 = p̄2 −
Φ2(q)

p2
, (3.3.7)

which consists in writing p2 as sum of an oscillatory term Φ2/p2 which is supposed to capture “most”
of the oscillatory dynamics, and some (hopefully) nicely behaved “slow” process p̄2. And indeed, if
we differentiate (3.3.7) we get

dp̄2 = d

(
p2 +

Φ2

p2

)

= dp2 + d+ Φ2

p2
+ d0 Φ2

p2
+ d−

Φ2

p2

= ϕ2 dt− ϕ2 dt−
(
p1w1

p2
+
p3w3

p2

)
dt− ϕ2Φ2

p2
2

dt

= −
(
p1w1

p2
+
p3w3

p2

)
dt− ϕ2Φ2

p2
2

dt .

(3.3.8)
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As a result, we have a new process p̄2 which is asymptotically equal to p2 in the regime of interest,
and whose dynamics involves only terms that are small when p2 is large, so that p̄2 is indeed a slow
variable. Observe that the choice of adding Φ2/p2 to p2 has the effect that d+(Φ2/p2) = −ϕ2 dt,
which precisely cancels the right-hand side of (3.3.5) while the remaining terms have negative powers
of p2. This observation is the starting point of the systematisation of the method.

Unfortunately, (3.3.8) is not good enough to understand how p̄2 (and therefore p2) decreases in
the long run, since the dynamics (3.3.8) of p̄2 still involves oscillatory terms. The idea is therefore to
eliminate these oscillatory terms by absorbing them into a further change of variable p̄2 = ¯̄p2 +G for
some suitably chosen G. The result is that d¯̄p2 is a sum of terms of degree −2 at most, which turn
out to be still oscillatory. This procedure must then be iterated, successively eliminating oscillatory
terms order by order, until we get some dynamics that has a non-zero average (which happens after
finitely many steps). We will follow this idea, but in a way that does not require to write the successive
changes of variable explicitly. More precisely, we will prove

Proposition 3.3.4. There is a function F = Φ2(q)
p2

+Ô(p−2
2 ) such that whenever p2(t) 6= 0 the process

p̃2(t) = p2(t) + F (Xt) satisfies

dp̃2(t) = a(Xt) dt+
∑

b

σb(Xt)dB
b
t , (3.3.9)

with

a(q, p) = −γ1

〈
W 2

1

〉
+ γ3

〈
W 2

3

〉

p3
2

+ Ô
(
p−4

2

)
,

σb(q, p) =

√
2γbTbWb

p2
2

+ Ô
(
p−3

2

)
, b = 1, 3 .

(By Assumption 3.3.2, no arbitrary additive constant appears in
〈
W 2

1

〉
and

〈
W 2

3

〉
.)

The next two sections are devoted to proving Proposition 3.3.4.

3.3.4. Averaging

The crux of our analysis is to average oscillatory terms in the dynamics. This is a well known problem
in differential equations. In classical averaging theory [52, 55], it is an external small parameter ε that
gives the time scale of the fast variables. Here, the role of ε is played by 1/p2, which is a dynamical
variable. We develop an averaging theory adapted to this case, and also to the stochastic nature of the
problem.

The starting point is as follows. Imagine that for a function h on Ω we find an expression of the
kind

dh = f dt+ drt , (3.3.10)

for some function f = f(Xt) of degree ` and some stochastic process rt ∈ U (see Definition 3.3.1)
which denotes the part of the dynamics that we do not want to interfere with. Thinking of f(Xt) as a
highly oscillatory quantity when p2 is very large, we would like to write h = h̄+ F for some small
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function F on Ω such that

dh̄ = 〈f〉 dt+ drt + small corrections , (3.3.11)

where the notion of small will be made precise in terms of powers of p2. That is, we want to find some
h̄ close to h, such that its dynamics involves, instead of f dt, the q2-average 〈f〉 dt plus some smaller
corrections. In other words, we are looking for some F such that

dF = d(h− h̄) = (f − 〈f〉) dt+ small corrections .

Remembering that in terms of powers of p2, d+ is the dominant part of d, the key is to find some F
such that d+F = (f − 〈f〉) dt. If we write L+ = p2∂q2 , we have d+F = L+Fdt. Thus, we really
need to invert L+ (which is in fact the dominant part of the generator L when p2 is large).

We call hereK the space of smooth functions Ω† → R, and we denote byK0 the space of functions
f ∈ K such that 〈f〉 = 0. Note that L+ maps K to K0 since for all f ∈ K, we have by periodicity

〈
L+f

〉
= p2 〈∂q2f〉 = 0 .

We can define a right inverse (L+)−1 : K0 → K0 by letting for all g ∈ K0

(L+)−1g =
1

p2

(∫
g dq2 + c(p, q1, q3)

)
,

where the integration “constant” c(p, q1, q3) is uniquely defined by requiring that
〈
(L+)−1g

〉
= 0.

This leads naturally to the following

Definition 3.3.5. For any function f ∈ K, we define the operator Q : K → K0 by

Qf = (L+)−1(f − 〈f〉) .

Remark 3.3.6.
• If f is a function of degree `, then Qf is of degree `− 1.

• By construction,
d(Qf) = (f − 〈f〉) dt+ d0(Qf) + d−(Qf) . (3.3.12)

• Moreover, by definition, Qf is the only function such that

∂q2(Qf) =
f − 〈f〉
p2

and 〈Qf〉 = 0 . (3.3.13)

Therefore, if (3.3.10) holds for some f of degree `, then we obtain a quantitative expression for
(3.3.11), namely

d(h−Qf) = 〈f〉 dt+ drt − d0(Qf)− d−(Qf) ,

where the corrections are small in the sense that Qf , d0(Qf) and d−(Qf) have degree respectively
`− 1, `− 1 and `− 2.
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Remark 3.3.7. Observe that (3.3.7) can be written now as p2 = p̄2 + Qϕ2, since Qϕ2 = −Φ2/p2.
Thus, the “naive” correction we added in (3.3.7) also follows from the systematic method we have just
introduced. This is no surprise: the naive correction in (3.3.7) was motivated by the approximation
(3.3.6) in which only q2 moves, which corresponds to considering only d+.

Remark 3.3.8. Our averaging procedure is inspired by techniques of [34]. There, the equivalent of
L+ is the generator −q2k−1

2 ∂p2 + p2∂q2 of the free dynamics of the middle oscillator, where q2k
2 /(2k)

is the pinning potential. In their case, one cannot explicitly invert L+, but one can show that (L+)−1

basically acts as a division by E
1
2
− 1

2k
2 , where E2 is the energy of the middle oscillator. Again, taking

formally the limit k →∞, one obtains that (L+)−1 acts as a division by
√
E2, much like in our case

where (L+)−1 acts as a division by p2 ∼
√
E2.

We now restate our averaging method as the following lemma, which follows from a trivial
rearrangement of the terms in (3.3.12).

Lemma 3.3.9. (Averaging lemma) Consider some function f = Ô(p`2) for some ` ∈ Z. Then

f dt = 〈f〉 dt− d0 (Qf)− d− (Qf) + d(Qf) ,

where d0(Qf) is of degree `− 1 at most and d−(Qf) is of degree `− 2 at most.

We now prove Proposition 3.3.4 by using Lemma 3.3.9 repeatedly.

3.3.5. Proof of Proposition 3.3.4

We make the following observations, which we will use without reference. For any function f on Ω†

that is smooth in q2, we have by periodicity

〈∂q2f〉 = 0 . (3.3.14)

Moreover, if g is another such function, then we can integrate by parts to obtain

〈(∂q2f)g〉 = −〈f∂q2g〉 .

Furthermore, we have by Assumption 3.3.2, (3.3.3) and (3.3.14) that

〈Wb〉 = 〈wb〉 = 〈Φ2〉 = 〈ϕ2〉 = 0 .

We start by doing again the first step, which we did in §3.3.3, but this time using the new toolset.
In order to average the right-hand side of

dp2 = ϕ2 dt ,

we use Lemma 3.3.9 with f = ϕ2, which is of order 0. We have 〈f〉 = 0 and Qf = −Φ2/p2 (by
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definition of ϕ2 and Φ2). We obtain

dp2 = d0

(
Φ2

p2

)
+ d−

(
Φ2

p2

)
− d

(
Φ2

p2

)

=
1

p2

∑

b

pb
∂Φ2

∂qb
dt− ϕ2Φ2

p2
2

dt− d

(
Φ2

p2

)

= − 1

p2

∑

b

pbwb dt− ϕ2Φ2

p2
2

dt− d

(
Φ2

p2

)
.

(3.3.15)

This is exactly what we found in (3.3.8).

We deal next with the terms −pbwb/p2 dt in (3.3.15). Using Lemma 3.3.9 with f = pbwb/p2

(and therefore with Qf = pbWb/p
2
2), we find, since 〈f〉 = pb 〈wb〉 /p2 = 0, that for b = 1, 3,

pbwb
p2

dt = − 1

p2
2

[
−p2

bwb + (ϕb + τb − γbpb)Wb

]
dt

− 1

p2
2

√
2γbTbWbdB

b
t +

2

p3
2

pbWbϕ2 dt+ dÔ
(
p−2

2

)
,

(3.3.16)

where here and in the sequel, we denote by dÔ(pk2) any generic expression of the kind dw(Xt) for
some function w = Ô(pk2) on Ω. Here dÔ

(
p−2

2

)
= d(pbWbp

−2
2 ). Substituting (3.3.16) into (3.3.15)

leads to

dp2 = I dt+ J dt+
1

p2
2

∑

b

√
2γbTbWbdB

b
t + d

(
−Φ2

p2
+ Ô

(
p−2

2

))
, (3.3.17)

with

I = −
∑

b

p2
bwb − (ϕb + τb − γbpb)Wb

p2
2

− ϕ2Φ2

p2
2

,

J =
2

p3
2

∑

b

pbWbϕ2 .

We next deal with the terms I dt and J dt.

First, we show that 〈I〉 = 0. It is immediate that
〈
p−2

2 p2
bwb
〉

and
〈
p−2

2 (τb − γbpb)Wb

〉
are zero.

Moreover,
〈
p−2

2 ϕ2Φ2

〉
= −1

2p
−2
2

〈
∂q2Φ2

2

〉
= 0. Thus,

〈I〉 =
∑

b

〈
1

p2
2

ϕbWb

〉
=
∑

b

〈
wb − ub
p2

2

Wb

〉

= −
∑

b

(〈
∂q2W

2
b

〉

2p2
2

+
ub 〈Wb〉
p2

2

)
= 0 .

Since I is of order −2 and 〈I〉 = 0, we find that QI is of order −3 and thus d−(QI) = Ô
(
p−4

2

)
dt.
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Applying Lemma 3.3.9 with f = I , we find

I dt = −d0 (QI) + Ô
(
p−4

2

)
dt+ dÔ

(
p−3

2

)
. (3.3.18)

Using that 〈QI〉 = 0, the definition (3.3.4) of d0 leads, upon inspection, to

d0 (QI) =
∑

b

wb∂pb(QI)dt+ Edt+
∑

b

Ô
(
p−3

2

)
dBb

t ,

where E is a sum of terms of order −3 and 〈E〉 = 0.

Applying Lemma 3.3.9 to wb∂pb(QI)dt and E dt, we obtain

d0 (QI) =
∑

b

〈wb∂pb(QI)〉dt+ Ô
(
p−4

2

)
dt+

∑

b

Ô
(
p−3

2

)
dBb

t . (3.3.19)

Using the definition of wb, integrating by parts once and using (3.3.13), we have for b = 1, 3,

〈wb∂pb(QI)〉 = 〈∂q2(Wb)Q(∂pbI)〉 = −〈Wb∂q2Q(∂pbI)〉 = − 1

p2
〈Wb∂pbI〉 .

Since ∂pbI = −p−2
2 (2pbwb + γbWb), we get

〈wb∂pb(QI)〉 =

〈
1

p3
2

Wb (2pbwb + γbWb)

〉
=

1

p3
2

γb
〈
W 2
b

〉
, (3.3.20)

where again we have used that 〈Wbwb〉 = 1
2

〈
∂q2W

2
b

〉
= 0.

Substituting (3.3.20) into (3.3.19) and then the result into (3.3.18) we finally get

I dt = − α
p3

2

dt+
∑

b

Ô
(
p−3

2

)
dBb

t + Ô
(
p−4

2

)
dt+ dÔ

(
p−3

2

)
, (3.3.21)

where
α =

∑

b

γb
〈
W 2
b

〉
.

We next deal with the term J dt of (3.3.17). First, by Lemma 3.3.9,

J dt = 〈J〉 dt+ Ô
(
p−4

2

)
dt+

∑

b

Ô
(
p−4

2

)
dBb

t + dÔ
(
p−4

2

)
. (3.3.22)

Unfortunately, 〈J〉 6= 0,3 and we will need some more subtle identifications. Integrating by parts, we

3For example if Wb = − cos(q2 − qb), there are in 〈J〉 some terms of the kind 〈p3 cos(q2 − q1) sin(q2 − q3)〉 and
〈p1 sin(q2 − q1) cos(q2 − q3)〉 which are non-zero.
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have
〈J〉 =

2pb
p3

2

∑

b

〈Wbϕ2〉 = −2pb
p3

2

∑

b

〈Wb∂q2Φ2〉

=
2pb
p3

2

∑

b

〈(∂q2Wb)Φ2〉 =
2pb
p3

2

∑

b

〈wbΦ2〉

= − 1

p3
2

∑

b

pb∂qb〈Φ2
2〉 .

(3.3.23)

On the other hand, since p−3
2 〈Φ2

2〉 does not depend on q2, we find d+(p−3
2 〈Φ2

2〉) = 0, so that

d

(〈Φ2
2〉
p3

2

)
= d0

(〈Φ2
2〉
p3

2

)
+ d−

(〈Φ2
2〉
p3

2

)

=
∑

b

pb∂qb

(〈Φ2
2〉
p3

2

)
dt+ Ô

(
p−4

2

)
dt .

(3.3.24)

Combining (3.3.23) and (3.3.24) we find

〈J〉 dt = Ô(p−4
2 ) dt+ d(p−3

2 〈Φ〉22) = Ô(p−4
2 ) dt+ dÔ(p−3

2 ) ,

so that from (3.3.22) we obtain

J dt = Ô
(
p−4

2

)
dt+

∑

b

Ô
(
p−4

2

)
dBb

t + dÔ
(
p−3

2

)
.

This together with (3.3.17) and (3.3.21) finally shows that

dp2 = −
(
α

p3
2

+ Ô
(
p−4

2

))
dt+

∑

b

(√
2γbTbWb

p2
2

+ Ô
(
p−3

2

))
dBb

t + d

(
−Φ2

p2
+ Ô

(
p−2

2

))
,

which implies (3.3.9) and completes the proof of Proposition 3.3.4.

Remark 3.3.10. We can argue (in a nonrigorous way) that when |p2| is very large, the dynamics of
p̃2 is approximately that of a particle interacting with two “effective” heat baths at temperatures T1

and T3, but with some coupling of magnitude p−4
2 . Indeed, we can write (3.3.9) in the canonical

“Langevin” form
dp̃2(t) =

∑

b

(
− γ̃b(Xt)p̃2(t)dt+ σb(Xt)dB

b
t

)
,

with σb(q, p) =
√

2γbTbWb/p
2
2 + Ô(p−3

2 ) as in Proposition 3.3.4 and γ̃b(q, p) = γb
〈
W 2
b

〉
/p4

2 +

Ô(p−5
2 ). We would like to introduce an effective temperature T̃b by some Einstein-Smoluchowski

relation of the kind σ2
b/(2γ̃b) = T̃b in the limit |p2| → ∞. Unfortunately,

lim
|p2|→∞

σ2
b

2γ̃b
=

W 2
b〈

W 2
b

〉Tb ,
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which instead of a constant is an oscillatory quantity (with mean Tb). Now observe that these
oscillations disappear if we approximate the oscillatory term Wb in σb by its quadratic mean

〈
W 2
b

〉
1/2.

This approximation is reasonable in the following sense: for small t and large |p2|, we have that
p2(s) ≈ p2(0) for s ≤ t, so that

∫ t

0

√
2γbTbWb

p2
2(s)

dBb
s ≈
√

2γbTb
p2

2(0)

〈
W 2
b

〉
1/2M(t) with M(t) =

∫ t

0

Wb〈
W 2
b

〉
1/2

dBb
s .

But then, by the Dambis-Dubins-Schwarz representation theorem, there is another Brownian motion
B̃b such that M(t) = B̃b

τ(t) with τ(t) =
∫ t

0 W
2
b /
〈
W 2
b

〉
ds. Clearly, when |p2| is very large, τ(t) ≈ t

so that M(t) is very close to B̃b
t . In this sense, when |p2| → ∞, it is reasonable to approximate

(
√

2γbTbWb/p
2
2)dBb

s with (
√

2γbTb
〈
W 2
b

〉
1/2/p2

2)dB̃b
s, so that the Einstein-Smoluchowski relation

indeed holds with effective temperature T̃b = Tb.

Remark 3.3.11. The ergodicity of 1D Langevin processes is well understood: for any δ ∈ (−1, 0),
processes satisfying an SDE of the kind

dp ∼ −C1p
δ dt+ C2dBt

asymptotically (when |p| → ∞) are typically ergodic with a rate bounded above and below by
exp(−c±t(1+δ)/(1−δ)) for some constants c+, c− > 0 (see [16,33] and references therein, in particular
[33] for the lower bound). As argued in Remark 3.3.10, the variable p̃2 (which is expected to be the
component of the system that limits the convergence rate) essentially obeys an equation of the kind
dp ∼ −C1p

−3 dt+ C2p
−2dBt asymptotically. It is easy to check that a change of variable y = p3

yields the asymptotic dynamics dy ∼ −C ′1y−1/3 dt + C ′2dBt so that with δ = −1/3, we expect a
rate exp(−ct1/2). This suggests that the rate of convergence we find is optimal.

3.4. Lyapunov function

We now prove Proposition 3.2.2. Throughout this section, p̃2 is the function defined in Proposi-
tion 3.3.4. The basic idea is to consider a Lyapunov function

V ∼ ρ(p)p̃ 2
2 e

β
2
p̃ 2
2 + eβH ,

where ρ(p) is non-zero only when |p2| is much larger than |p1| and |p3|. We will obtain that LV .
−ϕ(V ), with ϕ(s) ∼ s/ log(s) as in Proposition 3.2.2. The fact that we do not have a bound of the
kind LV . −cV (which would yield exponential ergodicity) comes from the very slow decay of p2.
The basic idea is that, when p2 →∞ and p1, p3 ∼ 0,

Lp̃2 ∼ −p−3
2 , so that L

(
p̃ 2

2 e
β
2
p̃ 2
2

)
∼ −eβ2 p̃ 2

2 ∼ − V
p2

2

∼ − V

log V
.

We now introduce the necessary tools to make this observation rigorous.
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Lemma 3.4.1. For β > 0 small enough, there are constants C1, C2 > 0 such that

LeβH ≤ (C1 − C2(p2
1 + p2

3))eβH .

Proof. We have LeβH =
∑

b

(
−γbβ(1− βTb)p2

b + βτbpb + γbβTb
)
eβH . If β < 1/max(T1, T3),

then γbβ(1 − βTb) > 0. Moreover, since βτbpb < 1
2γbβ(1− βTb)p2

b + C for C large enough, we
find the desired bound.

Lemma 3.4.2. For β > 0 small enough, there is a constant C3 > 0 such that on Ω† = {x ∈ Ω :

p2 6= 0},
L
(
p̃ 2

2 e
β
2
p̃ 2
2
)
≤
(
− C3 + Ô

(
p−1

2

))
e
β
2
p̃ 2
2 . (3.4.1)

Proof. Introducing f(s) = s2e
β
2
s2 , we have by the Itō formula and Proposition 3.3.4 that

d
(
p̃ 2

2 e
β
2
p̃ 2
2
)

= df(p̃2) = f ′(p̃2)(adt+
∑

b

σbdB
b
t ) +

1

2
f ′′(p̃2)

∑

b

σ2
b dt

= (2p̃2 + βp̃ 3
2 )e

β
2
p̃ 2
2 (a dt+

∑

b

σbdB
b
t ) +

1

2
(2 + 5βp̃ 2

2 + β2p̃ 4
2 )e

β
2
p̃ 2
2

∑

b

σ2
b dt .

Now since a = −αp−3
2 + Ô

(
p−4

2

)
with α =

∑
b γb

〈
W 2
b

〉
, σb =

√
2γbTbWbp

−2
2 + Ô

(
p−3

2

)
, and

p̃ k2 = pk2 + Ô(pk−1
2 ) for all k, we find after taking the expectation value

L
(
p̃ 2

2 e
β
2
p̃ 2
2
)

=
(
− αβ + β2

∑

b

γbTbW
2
b + Ô

(
p−1

2

))
e
β
2
p̃ 2
2 ,

which gives the desired bound if β is small enough (recall that the W 2
b are bounded).

Convention: We fix β > 0 small enough so that the conclusions of Lemma 3.4.1 and Lemma 3.4.2
hold.

Let k ≥ 1 be an integer and R > 0 be a constant (which we will fix later). We split Ω into three
disjoint sets Ω1,Ω2,Ω3 defined by

• Ω1 = {x ∈ Ω : |p2| < (p2
1 + p2

3)k +R},
• Ω2 = {x ∈ Ω : (p2

1 + p2
3)k +R ≤ |p2| ≤ 2(p2

1 + p2
3)k + 2R},

• Ω3 = {x ∈ Ω : |p2| > 2(p2
1 + p2

3)k + 2R}.
Fix some m,n ∈ N and ` ≥ 1. On Ω2 ∪Ω3, we have by definition |p2| ≥ (p2

1 + p2
3)k +R, so that

∣∣∣∣
pn1p

m
3

p`2

∣∣∣∣ ≤
|pn1pm3 |

((p2
1 + p2

3)k +R)`
(on Ω2 ∪ Ω3) .

Clearly, if k and R are large enough, the right-hand side is bounded by an arbitrarily small constant.
Therefore, any given Ô(p−1

2 ) is also bounded by an arbitrarily small constant on Ω2 ∪ Ω3 provided
that k and R are large enough, since it is by definition a sum finitely many terms of order less or equal
to -1. Using this, we obtain
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Lemma 3.4.3. For k and R large enough, there are constants C4, . . . , C7 > 0 such that the following
properties hold on Ω2 ∪ Ω3:

|p̃ 2
2 − p2

2| < C4 , (3.4.2)

L
(
p̃ 2

2 e
β
2
p̃ 2
2
)
≤ −C5e

β
2
p̃ 2
2 , (3.4.3)

C6e
−β

2 (p21+p23)eβH ≤ eβ2 p̃ 2
2 ≤ C7e

−β
2 (p21+p23)eβH . (3.4.4)

Proof. Since p̃2 = p2 + Φ2(q)/p2 + Ô(p−2
2 ), we have p̃ 2

2 = p2
2 + 2Φ2(q) + Ô(p−1

2 ). By taking k
large enough, the Ô(p−1

2 ) here is bounded by a constant on the set Ω2 ∪ Ω3, which implies (3.4.2).
Moreover, for large k and R, the Ô

(
p−1

2

)
in (3.4.1) is also bounded on Ω2 ∪Ω3 by an arbitrarily small

constant, which implies (3.4.3). To prove (3.4.4), observe that

e
β
2
p̃ 2
2 = e

β
2 (p̃ 2

2−p22−p21−p23−U(q))eβH ,

where U(q) contains all the potentials appearing in H . This together with the boundedness of U and
(3.4.2), implies (3.4.4).

Convention: We fix k and R such that the conclusions of Lemma 3.4.3 hold.

Definition 3.4.4. Let χ : R → [0, 1] be a smooth function such that χ(s) = 0 when |s| < 1 and
χ(s) = 1 when |s| > 2. We introduce the cutoff function

ρ(p) = χ

(
p2

(p2
1 + p2

3)k +R

)
,

and the Lyapunov function
V = 1 +Aρ(p)p̃ 2

2 e
β
2
p̃ 2
2 + eβH ,

with A > 0 (to be chosen later).

By construction ρ(p) is smooth, ρ(p) = 0 on Ω1 and ρ(p) = 1 on Ω3, with some transition on
Ω2. Remember that p̃2 is by construction smooth on Ω†, i.e., when p2 6= 0. In particular, since
Ω2 ∪ Ω3 ⊂ Ω†, the function ρ(p)p̃ 2

2 e
β
2
p̃ 2
2 is smooth on Ω, and so is V . We can now finally give the

Proof of Proposition 3.2.2. We show here that V satisfies the conditions enumerated in Proposi-
tion 3.2.2 if A is large enough. Let us first prove the first statement, which is that there exist c1, c2 > 0

such that
1 + c1e

βH ≤ V ≤ c2(1 + p2
2)eβH . (3.4.5)

Clearly the lower bound on V holds. We now prove the upper bound. Throughout the proof, we
denote by c a generic positive constant which can be each time different. Since ρ 6= 0 only on Ω2∪Ω3,
we have by (3.4.2) and (3.4.4),

|Aρ(p)p̃ 2
2 e

β
2
p̃ 2
2 | ≤ c(p2 + C4)2e−

β
2 (p21+p23)eβH

≤ c(p2
2 + 2C4p2 + C2

4 )eβH ≤ c(1 + p2
2)eβH .
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But then V ≤ 1 + c(1 + p2
2)eβH ≤ c(1 + p2

2)eβH , where the last inequality holds because H is
bounded below, so that eβH is bounded away from zero.

Let us now move to the second statement of Proposition 3.2.2, which is that for c3, c4 large enough
and a compact set K,

LV ≤ c31K − ϕ(V ) with ϕ(s) =
c4 s

2 + log(s)
. (3.4.6)

We first show that

LV ≤ c1K − ceβH with K = {x ∈ Ω1 ∪ Ω2 : p2
1 + p2

3 ≤M} , (3.4.7)

for some large enoughM . ClearlyK is compact, since Ω1∪Ω2 = {x ∈ Ω : |p2| ≤ 2(p2
1+p2

3)k+2R}.

• On Ω1 we simply have V = 1+eβH . By Lemma 3.4.1, we have LV ≤ (C1−C2(p2
1 +p2

3))eβH .
Since Ω1 \K = {x ∈ Ω1 : p2

1 + p2
3 > M}, we have for large enough M that LV ≤ −ceβH on

Ω1 \K, and therefore (3.4.7) holds on Ω1.

• On Ω2, the key is to observe that there is a polynomial z(p1, p2, p3) such that

|L(Aρ(p)p̃ 2
2 e

β
2
p̃ 2
2 )| ≤ z(p)eβ2 p̃ 2

2 ≤ C7z(p)e
−β

2 (p21+p23)eβH ,

where the second inequality comes from (3.4.4). Now, since p2
1 + p2

3 ∼ |p2|1/k on Ω2, we have
that z(p)e−

β
2 (p21+p23) is bounded on Ω2. Therefore, by this and Lemma 3.4.1, we have on Ω2,

LV ≤
(
C7z(p)e

β
2 (−p21−p23) + C1 − C2(p2

1 + p2
3)
)
eβH

≤
(
c− C2(p2

1 + p2
3)
)
eβH .

which, as in the previous case, implies that (3.4.7) holds on Ω2 if M is large enough.

• On Ω3, which is the critical region, we have V = 1 +Ap̃ 2
2 e

β
2
p̃ 2
2 + eβH . By Lemma 3.4.1 and

(3.4.3), it holds in Ω3 that

LV ≤ (C1 − C2(p2
1 + p2

3))eβH − C5Ae
β
2
p̃ 2
2 . (3.4.8)

On the set {x ∈ Ω3 : C1 − C2(p2
1 + p2

3) ≤ −1}, we simply have LV ≤ −eβH , so that (3.4.7)
holds trivially. On the other hand, on the set {x ∈ Ω3 : C1 − C2(p2

1 + p2
3) > −1} the quantity

p2
1 + p2

3 is bounded, so that e
β
2
p̃ 2
2 ≥ ceβH by (3.4.4), which with (3.4.8) implies that

LV ≤ (C1 − C2(p2
1 + p2

3))eβH − cAeβH ≤ (C1 − cA)eβH .

By making A large enough, we again find a bound LV ≤ −ceβH , so that (3.4.7) holds.

Therefore, (3.4.7) holds on all of Ω. To obtain (3.4.6), we need only show that eβH ≥ cV/(2 +

log V ). By the boundedness of the potentials and the definition of V , we have 1 + p2
2 ≤ 2H +
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c ≤ c log(eβH) + c ≤ c log V + c ≤ c(log V + 2). But then by (3.4.5) we indeed have that
eβH ≥ cV/(1 + p2

2) ≥ cV/(2 + log V ). This completes the proof of Proposition 3.2.2.

Remark 3.4.5. The external forces τb and the pinning potentials Ui (if non-zero) do not play a central
role in the properties of the Lyapunov function. On the contrary, the interaction potentials Wb are very
important, since we need α =

∑
b γb

〈
W 2
b

〉
to be strictly positive.

Remark 3.4.6. Although we assume throughout that T1 and T3 are strictly positive, the computations
that lead to the Lyapunov function apply to zero temperatures as well (the temperatures only appear in
some non-dominant terms in V and LV ). In that case, the existence of an invariant measure can still
be obtained by compactness arguments (see e.g., Proposition 5.1 of [34]). However, the smoothness,
uniqueness and convergence assertions do not necessarily hold: when T1 = T3 = 0 the system is
deterministic, the transition probabilities are not smooth, and there is at least one invariant measure
concentrated at each stationary point of the system. The positive temperatures assumption is crucial in
the next section.

3.5. Smoothness and irreducibility

This section is devoted to proving that the hypotheses of Theorem 3.2.1 other than the existence of the
Lyapunov function are satisfied. More precisely we will prove the following proposition.

Proposition 3.5.1. The following properties hold.
(i) The transition probabilities P t(x, · ) have a density pt(x, y) that is smooth in (t, x, y) when

t > 0. In particular, the process is strong Feller.

(ii) The time-1 skeleton (Xn)n=0,1,2,··· is irreducible, and the Lebesgue measure m on (Ω,B) is a
maximal irreducibility measure.

(iii) Every compact set is petite.

In a sense, (i) shows that we have some effective diffusion in all directions at very short times, and
(ii) shows that every part of the phase space is eventually reached with positive probability. Observe
that (iii) follows from (i) and (ii). Indeed, by (i), (ii) and Proposition 6.2.8 of [43], every compact set
is petite for the time-1 skeleton. But then every compact set is also petite with respect to the process
Xt (simply by choosing a sampling measure on [0,∞) that is concentrated on N). Therefore, we need
only prove (i) and (ii), which we do in the next two subsections.

3.5.1. Smoothness

We show here that the semigroup has a smoothing effect. More specifically, we show that a Hörmander
bracket condition is satisfied, so that the transition probability P t(x,dy) has a density pt(x, y) that is
smooth in t, x and y, and every invariant measure has a smooth density [35].

We identify vector fields over Ω and the corresponding first-order differential operators in the
usual way (we identify the tangent space of Ω with R6). This enables us to consider Lie algebras
of vector fields over Ω of the kind

∑
i(fi(q, p)∂qi + gi(q, p)∂pi), where the Lie bracket [ · , · ] is the

usual commutator of two operators.
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Definition 3.5.2. We defineM as the smallest Lie algebra that

(i) contains the constant vector fields ∂p1 , ∂p3 ,

(ii) is closed under the operation [ · , A0], where

A0 =

3∑

i=1

(pi∂qi − ui∂pi) +
∑

b

(wb(∂pb − ∂p2) + τb∂pb − γbpb∂pb)

is the drift part of L.

By the definition of a Lie algebra,M is closed under linear combinations and Lie brackets.

Lemma 3.5.3. Hörmander’s bracket condition is satisfied. More precisely, for all x = (q, p), the set
{v(x) : v ∈M} spans R6.

Proof. By definition, the constant vector fields ∂p1 and ∂p3 belong toM. Moreover, for b = 1, 3,
[∂pb , A0] = ∂qb − γb∂pb . SinceM is closed under linear combinations and ∂pb ∈M, it follows that
∂qb ∈M for b = 1, 3. Thus it only remains to show that at each x ∈ Ω, we can span the directions of
∂q2 and ∂p2 . In the following, f denotes a generic function on Ω that can be each time different. We
have [∂qb , A0] = w′b(q2 − qb)∂p2 + f(q)∂pb so that commuting n− 1 times with ∂qb we get that for
all n ≥ 1

w
(n)
b (q2 − qb)∂p2 + f(q)∂pb ∈M . (3.5.1)

Commuting the above with A0, we find that for all n ≥ 1,

w
(n)
b (q2 − qb)∂q2 + f(q, p)∂p2 + f(q)∂pb + f(q, p)∂qb ∈M . (3.5.2)

By Assumption 3.1.2, there is some b ∈ {1, 3} such that for any fixed x ∈ Ω, there is an integer n ≥ 1

such that w(n)
b (q2 − qb) 6= 0. Thus, by (3.5.1) and (3.5.2) the proof is complete.

Thus, we have proved Proposition 3.5.1 (i).

3.5.2. Irreducibility

We show in this section that the process has an irreducible skeleton. We give in fact two different
proofs. The first one is given in a general and abstract framework, and works for chains of any lengths.
The second one is more explicit, gives more than the irreducibility of a skeleton, but relies strongly on
the fact that the chain is made of only three rotors.

Abstract version

Consider the transition probabilities P̃ t( · , · ) of the system at equilibrium, i.e., with parameters τ1 =

τ3 = 0 and T1 = T3 = T for some T > 0. For all x and t, the measures P t(x, · ) and P̃ t(x, · ) are
equivalent. This equivalence holds because any change of the parameters τ1, τ3 (respectively T1, T3)
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can be absorbed by shifting (respectively scaling) the Brownian motions appropriately. Therefore, it is
enough to prove the irreducibility claim at equilibrium.

At equilibrium, the Gibbs measure ν with density 1
Z exp(−H/T ) is invariant (with some normal-

isation constant Z) as mentioned earlier. Note that we do not assume a priori that ν is the unique
invariant measure at equilibrium, nor that the system at equilibrium is irreducible. The only two
properties that we need are invariance and (everywhere) positiveness of the density of ν .

Lemma 3.5.4. The equilibrium transition probabilities satisfy the following property: for every
measurable set S one has for all t

∫

S
P̃ t(x, Sc)dν =

∫

Sc
P̃ t(x, S)dν .

Proof. We have by the invariance of ν,
∫

Sc
P̃ t(x, S)dν −

∫

S
P̃ t(x, Sc)dν =

∫

Sc
P̃ t(x, S)dν +

∫

S
(P̃ t(x, S)− 1)dν

=

∫

Ω
P̃ t(x, S)dν −

∫

S
1dν = ν(S)− ν(S) = 0 ,

which completes the proof.

Lemma 3.5.5. Let A be a closed set. If A is invariant under P̃ 1 (i.e., P̃ 1(x,A) = 1 for all x ∈ A),
then either A = ∅ or A = Ω.

Proof. By Lemma 3.5.4,
∫
Ac P̃

1(x,A)dν =
∫
A P̃

1(x,Ac)dν = 0 since P̃ 1(x,Ac) = 0 for all x ∈ A.
This implies that P̃ 1(x,A) = 0 for all x ∈ Ac, since x 7→ P̃ 1(x,A) is continuous on the open set Ac

and ν has an everywhere positive density. But then P̃ t(x,A) is 1 when x ∈ A and 0 when x ∈ Ac, so
that by continuity we have ∂A = ∅. Since Ω is connected, the conclusion follows.

Note that same does not hold for non-closed sets: for example Ω minus any set of zero Lebesgue
measure is still an invariant set.

Lemma 3.5.6. The time-1 skeleton (Xn)n=0,1,2,··· is irreducible, and the Lebesgue measure m is a
maximal irreducibility measure.

Proof. As discussed above, it is enough to prove the result at equilibrium, i.e., with P̃ 1( · , · ). LetB be
a set such thatm(B) > 0. We need to show that the setA = {x ∈ Ω :

∑∞
n=1 P̃

n(x,B) = 0} is empty.
By the smoothness of x 7→ P̃n(x,B), it is easy to see that Ac = {x ∈ Ω : ∃n > 0, P̃n(x,B) >

0} is open, so that A is closed. Moreover, for all x ∈ A it holds that 0 =
∑∞

n=1 P̃
n(x,B) ≥∑∞

n=1 P̃
n+1(x,B) =

∫
Ω P̃

1(x, dy)
∑∞

n=1 P̃
n(y,B). But since by the definition of A we have∑∞

n=1 P̃
n(y,B) > 0 for all y ∈ Ac, we must have P̃ 1(x,Ac) = 0 for all x ∈ A, so that A is invariant.

But then by Lemma 3.5.5 either A = ∅ or A = Ω. We need to eliminate the second possibility.
Since m(B) > 0 and ν has positive density, we have ν(B) > 0. By the invariance of ν, we have∫

Ω P̃
1(x,B)dν = ν(B) > 0. But then there is some x ∈ Ω such that P̃ 1(x,B) > 0, so that x ∈ Ac.
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Therefore A 6= Ω, and thus A = ∅ and the process is irreducible with measure m. That m is a
maximal irreducibility measure follows immediately from the fact that the transition probabilities are
absolutely continuous with respect to m. This completes the proof.

Thus, we have proved Proposition 3.5.1(ii), so that the proof of Proposition 3.5.1 is complete.

Direct control version

We give now an alternate proof of Proposition 3.5.1(ii). We establish the irreducibility of our process
by using controllability arguments. We aim to establish the controllability of (3.1.1), where the
Brownian motions B1

t and B3
t are replaced with some deterministic, smooth controls fb : R+ → R.

By absorbing some terms into the controls fb, this problem is obviously equivalent to controlling the
differential equation

q̇i(t) = pi(t) ,

ṗ2(t) = −
∑

b

wb
(
q2(t)− qb(t)

)
,

ṗb(t) = fb(t) .

(3.5.3)

In [22] the irreducibility of chains oscillators has been studied. The authors have proved that
chains of any length are controllable in arbitrarily small times. This is of course not the case in our
model: since the force applied to p2 is bounded by some constants

K− =
∑

b

min
s∈T

wb(s), K+ =
∑

b

max
s∈T

wb(s) ,

the minimal time we need to bring the system from xi = (qi, pi) to xf = (qf , pf ) is at best
proportional to |pf2 − pi2|. On the other hand, q1, p1, q3, p3 can be put into any position in arbitrarily
short time. Observe that due to Assumption 3.1.2 and the fact that 〈wb〉 = 0, we have K− < 0 < K+.
We will prove the following proposition (remember that the positions qi are defined modulo 2π).

Proposition 3.5.7. The system (3.5.3) is approximately controllable in the sense that for all xi =

(qi, pi), xf = (qf , pf ) and all ε > 0, there is a time T ∗ > 0 satisfying T ∗ ≤ c1 + c2|pf2 − pi2| for
some constants c1 and c2 such that for all T > T ∗ there are some smooth controls f1, f3 : [0, T ]→ R
such that the solution of (3.5.3) with initial condition xi satisfies ‖x(T )− xf‖ < ε.

This property implies the irreducibility of the chain, since the classical result of Stroock and
Varadhan [54] links the support of the semigroup P t and the accessible points for (3.5.3), and implies
in particular that for all xi = (qi, pi) and t > c1 the subspace {x ∈ Ω : |p2 − pi2| ≤ (t− c1)/c2} is
included in the support of P t(xi, · ).

The idea is the following: in the next lemma, we show how the middle rotor can be forced into
any configuration by applying some piecewise constant force g(t) to it, with g(t) ∈ [K−,K+]. Then,
we will argue that one can move q1 and q3 (on which we have good control) in such a way that the
force exerted on the middle rotor is almost g(t).
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Lemma 3.5.8. Consider the system

˙̄q2(t) = p̄2(t) ,

˙̄p2(t) = g(t)− u2(q̄2(t)) ,
(3.5.4)

and fix some initial and terminal conditions (qi2, p
i
2) and (qf2 , p

f
2). We claim that there is a T ∗ satisfying

T ∗ ≤ c1 + c2|pf2 − pi2| for some constants c1 and c2 such that for all T > T ∗ there is a piecewise
constant control g(t) : R+ → [K−,K+] (with finitely many constant pieces) such that the solution of
(3.5.4) with initial data (qi2, p

i
2) satisfies p̄2(T ) = pf2 and q̄2(T ) = qf2 .

Proof. We prove this result only in the case u2 ≡ 0. If pf2 ≥ pi2, then let Θ = (pf2 − pi2)/K+ and let
g(t) = K+ for all t ∈ [0,Θ). If pf2 < pi2 let Θ = (pf2 − pi2)/K− and let g(t) = K− for all t ∈ [0,Θ).
In both cases, p̄2(Θ) = pf2 , while q̄2(Θ) might be anything. Let now K∗ = min(|K+|, |K−|), and
consider some ∆ > 0 and a ∈ [0,K∗]. Assume that g(t) = a when t ∈ [Θ,Θ + ∆) and g(t) = −a
when t ∈ [Θ + ∆,Θ + 2∆]. Clearly p̄2(Θ + 2∆) = p̄2(Θ) = pf2 and

q̄2(Θ + 2∆) = q̄2(Θ) + 2∆pf2 + a∆2 .

Observe that as soon as ∆ >
√

2π/K∗, we can choose a ∈ [0,K∗] so that q̄2(Θ + 2∆) takes any
value (modulo 2π). In particular, we can choose it to be qf2 , so that we have the advertised result with
T ∗ = Θ +

√
2π/K∗.

Remark 3.5.9. We have given a proof only if u2 ≡ 0. However, the result remains true even if u2 6= 0,
although the proof is much more involved. Typically, if the pinning is stronger than the interaction
forces wb, and the initial condition is such that p2 is small, we sometimes have to push the middle rotor
several times back and forth to increase its energy enough to pass above the “potential barrier” created
by U2. Conversely, we sometimes have to brake the middle rotor with some non-trivial controls.

We now have some piecewise constant control g(t) that can bring the middle rotor to the final
configuration of our choice. It remains to show that we can make the external rotors follow some
trajectories that have the appropriate initial and terminal conditions, and such that the force exerted on
the middle rotator closely approximates g(t). We do not prove this in detail, but we list here the main
steps.

• Since K− ≤ g(t) ≤ K+, it is possible to find piecewise smooth functions q∗b (t), b = 1, 3, such
that

∑
bwb(q̄2(t)− q∗b (t)) ≡ g(t), where q̄2(t) is the solution of (3.5.4).

• Let δ > 0 be small. We can find some smooth trajectories qb(t) compatible with the boundary
conditions xi and xf , such that qb(t) = q∗b (t) for all t ∈ [0, T ] \ Aδ, where Aδ consists of a
finite number of intervals of total length at most δ. We can choose the controls fb so that the
qb(t) constructed here are solutions to (3.5.3) (when δ is small, fb(t) is typically very large for
t ∈ Aδ).

• Since the interaction forces wb are bounded, their effect during the times t ∈ Aδ is negligible
when δ is small. More precisely, it can be shown that the solution q2(t) and p2(t) of (3.5.3)
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converge uniformly on [0, T ] to the solutions q̄2(t) and p̄2(t) of (3.5.4) when δ → 0. Therefore,
the system is approximately controllable in the sense of Proposition 3.5.7.

3.6. Numerical illustrations

In this section we illustrate some properties of the invariant measure in the case where Ui ≡ 0 and
W1 = W3 = − cos.

We use throughout the values γ1 = γ3 = 1 and τ1 = 0. We give examples of how the marginal
distributions of p1, p2, p3 depend on the temperatures T1, T3 and the external force τ3. We apply the
numerical algorithm given in [37] with time-increment h = 0.001. The resulting graphs are quite
independent of h. In order to obtain good statistics and smooth curves, the probability densities shown
below are sampled over 108 units of time and several hundred bins.

At equilibrium, i.e., when T1 = T3 = T and τ3 = 0 (remember that τ1 = 0 in this section), the
marginal law of each pi has a density proportional to exp(−p2

i /2T ) for i = 1, 2, 3. This is obviously
not the case out of equilibrium. Moreover, since we work with a finite number of rotors, we do not
expect to see any form of local thermal equilibrium in the bulk of the chain (here the “bulk” consists
of only the middle rotor). Clearly, the distribution of p2 can be quite far from Maxwellian (Gaussian).

In Figure 3.2 we show the marginal distributions of p1, p2, p3 for different temperatures and no
external force. For each pair of temperatures, we show the distributions both in linear and logarithmic
scale. At equilibrium, when T1 = T3 = 10, all three distributions coincide exactly and are Gaussian.
However, when T1 6= T3, we see that the distribution of p2 is not Gaussian (clearly, the distribution is
not a parabola in logarithmic scale).

We next consider the effect of the external force τ3 on the marginal distributions of the pi, for
T1 = 10 and T3 = 15. As illustrated in Figure 3.3, the distributions of p1 and p3 are close to Gaussians
with variance T1 and T3 and mean 0 and τ3. Note that when τ3 6= 0, the distribution of p2 has two
maxima: one at 0 and one at τ3. The explanation for these two maxima can be found by looking at the
trajectories pi(t) as shown in Figure 3.4 (for τ3 = 20); p1 fluctuates around 0, p3 fluctuates around τ3,
and p2 switches between these two regimes. In the regime where p2 fluctuates around zero, the rotor 2
interacts strongly with 1 and weakly with 3 (since then the force w3 oscillates with “high frequency”
p3 − p2 ∼ τ3). Inversely, in the regime where p2 fluctuates around τ3, it interacts strongly with 3 and
only weakly with 1. Other simulations (not shown here) show that, as expected, the larger τ3, the less
frequent the switches between these two regimes. The asymmetry of the two maxima in Figure 3.3 is
explained by the inequality T1 < T3, which makes the fluctuations larger in the second regime, so that
the mean sojourn time there is shorter.
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Figure 3.2 – Distribution of p1, p2, p3, with no external force and several temperatures.
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Figure 3.3 – Distribution of p1, p2, p3, with T1 = 10, T3 = 15 for 3 values of τ3.
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Figure 3.4 – Representation of the evolution of p1, p2, p3 with T1 = 10, T3 = 15, τ3 = 20.
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3.7. Supplement: lower bound on the convergence

In this supplement4, we show that the stretched exponential bound obtained above is optimal in a
sense. For simplicity, we consider here only a chain of two rotors (see Figure 3.5).

q1 q2

T

Figure 3.5 – A simplified system with two rotors.

The first rotor is coupled to a heat bath at temperature T > 0, with a coupling constant γ > 0. The
second rotor interacts with the first one through a smooth potential W (q2 − q1), and is not coupled to
any heat bath. We apply no other external force to the system, and we take no pinning potential. The
phase space is now Ω = T2 × R2, and we write x = (q, p) = (q1, q2, p1, p2). The Hamiltonian is

H(q, p) =
p2

1 + p2
2

2
+W (q2 − q1) ,

and we consider the stochastic differential equation

dqi(t) = pi(t) dt , i = 1, 2 ,

dp1(t) = w
(
q2(t)− q1(t)

)
dt− γp1(t) dt+

√
2γT dBt ,

dp2(t) = −w
(
q2(t)− q1(t)

)
dt ,

(3.7.1)

where we have introduced the derivative w of W , and where Bt is a standard Wiener process. Without
loss of generality, we choose the additive constant in W such that

∫ 2π
0 W (s)ds = 0. We denote again

by P t(x, · ) the transition probabilities, by Ex the expectation with respect to the process started at x,
and we introduce the generator

L = p1∂q1 + p2∂q2 + w(q2 − q1)(∂p1 − ∂p2)− γp1∂p1 + γT∂2
p1 .

The physical picture is essentially the same as with three rotors: the second rotor decouples when
its energy is large, and the crux is to obtain an effective dynamics in this regime. Since there is only
one temperature at hand, the invariant measure π is simply the Gibbs measure, i.e.,

dπ(q, p) =
1

Z
e−

H
T dpdq ,

where Z is a normalization constant.

4which is available as an independent note in [14]

59
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We now formulate the main result of this section, which says that for the chain of two rotors con-
sidered here, the convergence to the invariant measure happens no faster than a stretched exponential
with exponent 1/2.

Theorem 3.7.1. There is a constant c∗ > 0 such that for each initial condition x ∈ Ω, there exist a
constant C > 0 and a sequence (tn)n≥0 increasing to infinity such that

‖P tn(x, · )− π‖TV ≥ Ce−c∗
√
tn .

Proof. In Proposition 3.7.4 below, we will construct a test function F : Ω → [1,∞) such that
π(F 1−ε) =∞ for some ε ∈ (0, 1), and such that for some A > 0 and all x ∈ Ω,

ExF (xt) ≤ F (x)e
√

2At . (3.7.2)

The desired result then follows from [33, Theorem 3.6 and Corollary 3.7]. For completeness, we give
here an explicit adaptation of the proof to the present case.

We fix x ∈ Ω and write νt = P t(x, · ). The result follows from comparing an upper bound on the
tail of νt with a lower bound on the tail of π.

• By (3.7.2) and Markov’s inequality, we have for all w > 0 the upper bound

νt(F > w) ≤ F (x)e
√

2At

w
. (3.7.3)

• Since (1− ε)
∫∞

1 π(F > w)w−εdw = π(F 1−ε) =∞, there is a sequence (wn)n≥0 increasing

to infinity such that π(F > wn)w−εn ≥ w
−1−ε/2
n . As a consequence, we have for each n ≥ 0

the inequality

π(F > wn) ≥ 1

w
1−ε/2
n

. (3.7.4)

By (3.7.3), (3.7.4) and the definition of the total variation norm, we have for all n that

‖νt − π‖TV ≥ π(F > wn)− νt(F > wn) ≥ 1

w
1−ε/2
n

− F (x)e
√

2At

wn
.

Picking now tn such that F (x)e
√

2Atn = 1
2w

ε/2
n , we obtain

‖νtn − π‖TV ≥
1

2w
1−ε/2
n

= Ce−c∗
√
tn ,

with c∗ = (2
ε − 1)

√
2A and C = 1

2(2F (x))1− 2
ε . This completes the proof.

We now construct a function F that has the properties needed in the proof of Theorem 3.7.1. This
function F will grow fast enough along the p2-axis so that π(F 1−ε) = ∞ for all small enough ε.
Moreover, F will satisfy a relation of the kind LF . F/ logF , which implies (3.7.2) as we will show.
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We start by approximating the dynamics of p2 by an “averaged” variable p̄2 in the regime where p2

is very large. As we will need some control also when p1 scales linearly with p2 (see Proposition 3.7.4),
we cannot simply use an expansion in negative powers of p2 as we did in §3.3.4. We instead need
to consider negative powers of p2 − p1, with the following more refined notion of order (see also
Remark 3.7.5).

Definition 3.7.2. For any continuous function f : T2 → R and any choice of integers k, ` ≥ 0 and
m ∈ Z, we say that

f(q)pk1p
m
2

(p2 − p1)`

is of order k +m− `. We denote byR(j) a generic remainder of order at most j, i.e., a finite sum of
terms of order up to j.

The usual rules apply, in particularR(j) +R(k) = R(max(j, k)), andR(j)R(k) = R(j + k).
The aim now is to introduce a new variable p̄2 = p2 +R(−1), which is defined when p2 6= p1, and
which satisfies

dp̄2 = R(−3)dt+R(−2)dBt . (3.7.5)

In contrast to §3.3.4, it will not be necessary to estimate the remaindersR(−3) andR(−2) here.
For this reason (and the fact that there are only two rotors), the computations are short enough to
simply proceed explicitly. We have

dp2 = −w(q2 − q1) dt .

We then introduce a first correction

p
(1)
2 = p2 +

W (q2 − q1)

p2 − p1
,

and obtain by Itô’s formula

dp
(1)
2 =

W (q2 − q1)

(p2 − p1)2
(2w(q2 − q1)− γp1) dt+R(−2)dBt +R(−3)dt .

Since
∫ 2π

0 W (s)ds = 0, there exists an indefinite integral W [1] of W on T, which we choose so
that

∫ 2π
0 W [1](s)ds = 0. In turn, we introduce an indefinite integral W [2] of W [1]. By construction,

we have
(
W [1]

)′
= W and

(
W [2]

)′
= W [1].

We then set

p
(2)
2 = p

(1)
2 +

γp1W
[1](q2 − q1)− (W (q2 − q1))2

(p2 − p1)3
,
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and obtain

dp
(2)
2 = −γ

2p1W
[1](q2 − q1)

(p2 − p1)3
− 3γ2p2

1W
[1](q2 − q1)

(p2 − p1)4
+R(−2)dBt +R(−3)dt .

We finally obtain (3.7.5) by letting

p̄2 = p
(2)
2 +

γ2p1W
[2](q2 − q1)

(p2 − p1)4
+

3γ2p2
1W

[2](q2 − q1)

(p2 − p1)5
.

In order to construct the test function F , we now introduce some positive parameters β−, β+ and
δ satisfying

β− <
1

T
< β+ <

(
1 +

1

(1 + 2δ)2

)
β− , (3.7.6)

and consider the partition of Ω (see Figure 3.6) given by

• Ω0 = {x ∈ Ω : p2
1 + p2

2 < 1} ,

• Ω1 = {x ∈ Ω : |p2| ≤ (1 + δ)|p1|} \ Ω0 ,

• Ω2 = {x ∈ Ω : (1 + δ)|p1| < |p2| ≤ (1 + 2δ)|p1|} \ Ω0 ,

• Ω3 = {x ∈ Ω : |p2| > (1 + 2δ)|p1|} \ Ω0 .

Ω0

Ω2

Ω1

Ω3

|p1|

|p2|

Figure 3.6 – Partition of Ω (in momentum space).

We immediately have

Lemma 3.7.3. There are constants C1 and C2 such that on the set Ω2 ∪ Ω3, we have the two
inequalities

|p̄ 2
2 − p2

2| < C1 , (3.7.7)
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Le
β+
2
p̄ 2
2 ≤ C2p

−2
2 e

β+
2
p̄ 2
2 . (3.7.8)

Proof. Observe that for all k, ` ≥ 0 and m ∈ Z, there is a constant C such that on the set Ω2 ∪ Ω3 =

{x ∈ Ω : |p2| > (1 + δ)|p1|, p2
1 + p2

2 ≥ 1}, we have
∣∣∣∣

pk1p
m
2

(p2 − p1)`

∣∣∣∣ ≤ C|p2|k+m−` .

This implies that any remainderR(j) is bounded in absolute value by some constant times |p2|j on
Ω2 ∪ Ω3. In particular, since p̄ 2

2 = (p2 +R(−1))2 = p2
2 +R(0), we obtain that (3.7.7) holds on

Ω2 ∪ Ω3 for some appropriate C1.

In order to prove (3.7.8), we write f(s) = e
β+
2
s2 and obtain by Itô’s formula

d
(
e
β+
2
p̄ 2
2
)

= df(p̄2) = f ′(p̄2)(R(−3) dt+R(−2)dBt) +
1

2
f ′′(p̄2)R(−4) dt .

We thus find, since f ′(p̄2) = R(1)e
β+
2
p̄ 2
2 and f ′′(p̄2) = R(2)e

β+
2
p̄ 2
2 , that

Le
β+
2
p̄ 2
2 = f ′(p̄2)R(−3) +

1

2
f ′′(p̄2)R(−4) = R(−2)e

β+
2
p̄ 2
2 .

Now, on the set Ω2 ∪ Ω3, theR(−2) above is bounded by C2p
−2
2 for some C2 > 0, and thus (3.7.8)

holds.

We next introduce a smooth cutoff function ρ : R2 → [0, 1] such that ρ(p) = 1 on Ω3 and
ρ(p) = 0 on Ω1, with some transition on Ω2. More precisely, let χ : [0,∞]→ R be a smooth function
such that χ(s) = 1 when s ≥ 1 + 2δ, and χ(s) = 0 when s ≤ 1 + δ. On Ω \ Ω0, we let

ρ(p) = χ

(∣∣∣∣
p2

p1

∣∣∣∣
)
,

and we freely choose ρ on Ω0 so that it is smooth on all of Ω.

We now define the function F : Ω→ [1,∞) by

F (x) = 1 + eβ−H(x) + ρ(p)e
β+
2
p̄ 2
2 , (3.7.9)

for some β−, β+, δ satisfying (3.7.6). Observe that while F resembles the Lyapunov function V of
§3.4, it grows much faster along the p2-axis.

Proposition 3.7.4. Let F be as defined in (3.7.9). Then, π(F 1−ε) = ∞ for small enough ε, and
(3.7.2) holds for large enough A.

Proof. We let c be a generic positive constant which may vary from occurrence to occurrence. This
constant may depend on the parameters at hand, but not on the point in Ω.
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Let Γ = {x : |p1| ≤ 1} ∩ Ω3. Using (3.7.7) and the definition of H , we find

π(F 1−ε) ≥
∫

Γ
exp

(
β+(1− ε)p̄ 2

2

2

)
exp

(
−H
T

)

Z
dpdq

≥ c
∫

Γ
exp

(
β+(1− ε)p2

2

2
− p2

2

2T

)
dpdq .

(3.7.10)

Provided that we pick ε small enough so that 1
T < β+(1− ε), which is possible by (3.7.6), the last

integral in (3.7.10) is infinite, and thus π(F 1−ε) =∞.

We now prove the second assertion. As in §3.2, we introduce the concave and increasing function
ϕ : [1,∞)→ (0,∞) defined by

ϕ(s) =
As

2 + log s

for some A > 0. We will show that if A is large enough,

LF ≤ ϕ(F ) , (3.7.11)

which implies the desired result. Indeed, assume that (3.7.11) holds. Let (Cn)n≥0 be an increasing
sequence of compact sets such that Cn ↑ Ω, and consider the corresponding first exit times τn =

inf{t ≥ 0 : xt /∈ Cn}. We have τn → ∞ almost surely, since the process is non-explosive. By
Dynkin’s formula, we find

ExF (xt∧τn)− F (x) = Ex
∫ t∧τn

0
LF (xs)ds ≤ Ex

∫ t∧τn

0
ϕ(F (xs))ds

≤ Ex
∫ t

0
ϕ(F (xs∧τn))ds ≤

∫ t

0
ϕ(ExF (xs∧τn))ds,

where the last inequality comes from Fubini’s theorem and Jensen’s inequality (since ϕ is concave).
In other words, g(t) ≡ ExF (xt∧τn) satisfies the integral inequality g(t) ≤ g(0) +

∫ t
0 ϕ(g(s))ds. The

solution of the ordinary differential equation y′(t) = ϕ(y(t)) with y(0) = y0 ≥ 1 is

y(t) = exp
(√

(ln(y0) + 2)2 + 2At− 2
)
≤ y0e

√
2At , (3.7.12)

where we have used that
√ · is subadditive. By comparison, we thus obtain that ExF (xt∧τn) ≤

F (x) exp(
√

2At). Taking the limit n→∞ and using Fatou’s lemma gives (3.7.2).

Thus, it only remains to prove (3.7.11). First, observe that there is a polynomial z(p1, p2) such
that

L
(
ρ(p)e

β+
2
p̄ 2
2
)
≤ c+ 1Ω3Le

β+
2
p̄ 2
2 + 1Ω2z(p)e

β+
2
p̄ 2
2

≤ c+ 1Ω3cp
−2
2 e

β+
2
p̄ 2
2 + 1Ω2z(p)e

β+
2
p̄ 2
2 ,

(3.7.13)

where we have used (3.7.8).
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Moreover, since β− < 1/T , there is a set G of the form

G = {x ∈ Ω : |p1| < c}

such that

Leβ−H =
(
(β−T − 1)p2

1 + T
)
γβ−e

β−H ≤ (c− cp2
1)eβ−H

≤ c1Geβ−H − ceβ−H ≤ c1Geβ−
p22
2 − ceβ−H .

(3.7.14)

Combining (3.7.13) and (3.7.14), we find

LF ≤ c+ 1Ω3cp
−2
2 e

β+
2
p̄ 2
2 + 1Ω2z(p)e

β+
2
p̄ 2
2 + c1Ge

β−
p22
2 − ceβ−H . (3.7.15)

We now make two observations. First, on Ω2, we have by (3.7.7), the definition of H , and the
definition of Ω2 that

z(p)e
β+
2
p̄ 2
2 e−β−H ≤ cz(p)e

β+
2
p22−

β−
2

(p21+p22) ≤ cz(p)e
p22
2

(
β+−β−

(
1+ 1

(1+2δ)2

))
.

By (3.7.6), the above goes to zero when ‖p‖ → ∞ in Ω2, so we have

1Ω2z(p)e
β+
2
p̄ 2
2 − ceβ−H ≤ c . (3.7.16)

In a similar way, since β+ > β− and G ⊂ Ω3 ∪K for some compact set K (on which exp(β−
p22
2 )

is bounded), we have

1Ge
β−

p22
2 ≤ c+ 1Ω3cp

−2
2 e

β+
2
p̄ 2
2 , (3.7.17)

where we have also used (3.7.7). Combining now (3.7.15), (3.7.16) and (3.7.17), we obtain

LF ≤ c+ 1Ω3cp
−2
2 e

β+
2
p̄ 2
2 ≤ c+ 1Ω3

ce
β+
2
p̄ 2
2

2 + log
(
e
β+
2
p̄ 2
2

) ,

where the second inequality uses once more (3.7.7). Since 1Ω3 exp(β+2 p̄
2
2 ) ≤ F , and since the

function s 7→ s/(2 + log s) is increasing, we obtain

LF ≤ c+
cF

2 + logF
≤ cF

2 + logF
,

where the second inequality holds because F ≥ 1. Thus, we indeed have (3.7.11) for large enough A,
which completes the proof.

Remark 3.7.5. The fact that we have to work with two different constants β+ and β− seems to force
us to take a “transition region” Ω2 where p1 scales linearly with p2 (all other attempts have resulted in
some troublesome terms coming from the cutoffs). Unlike in §3.3.4, we are therefore not allowed
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to assume that p1 is small when we compute p̄2, which forces us to work with negative powers of
(p2 − p1) instead of simply p2. While this causes no trouble here with only two rotors, technical
complications arise if we try to generalize the computations above to chains of three rotors. Indeed,
terms involving (p2 − p1)−j and (p2 − p3)−j have to be assembled, and this leads to troublesome
error terms. We are currently able to provide such a generalization only if the potential W consists
of finitely many Fourier modes. In addition, with three rotors and two different temperatures, the
invariant measure π is not known explicitly, and some supplementary work would have to be done to
prove that the function F satisfies π(F 1−ε) =∞ for some ε.
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4. Chains of four rotors

The contents of this chapter is as published in [12], except for some references to [13] that have been
replaced with the corresponding references to Chapter 3 in the present thesis.

Non-equilibrium steady states for chains of four rotors
with Jean-Pierre Eckmann

Communications in Mathematical Physics
2016, first online, DOI:10.1007/s00220-015-2550-2

Abstract

We study a chain of four interacting rotors (rotators) connected at both ends to stochastic heat
baths at different temperatures. We show that for non-degenerate interaction potentials the system
relaxes, at a stretched exponential rate, to a non-equilibrium steady state (NESS). Rotors with
high energy tend to decouple from their neighbors due to fast oscillation of the forces. Because
of this, the energy of the central two rotors, which interact with the heat baths only through the
external rotors, can take a very long time to dissipate. By appropriately averaging the oscillatory
forces, we estimate the dissipation rate and construct a Lyapunov function. Compared to the chain
of length three (considered previously by C. Poquet and the current authors), the new difficulty
with four rotors is the appearance of resonances when both central rotors are fast. We deal with
these resonances using the rapid thermalization of the two external rotors.

4.1. Introduction

We consider a chain of 4 classical rotors interacting at both ends with stochastic heat baths at different
temperatures. Under the action of such heat baths, many Hamiltonian systems are known to relax to
an invariant probability measure called non-equilibrium steady state (NESS). In general, the explicit
expression for this invariant measure is unknown, and the convergence rate depends on the nature of
the system. For the model under consideration, we obtain a stretched exponential rate.

For several examples of Hamiltonian chains, properties of the NESS (e.g., thermal conductivity,
validity of the Fourier law, temperature profile, . . . ) have been studied numerically, perturbatively,
or via some effective theories. See for example [4, 7, 15, 17, 27, 30, 37, 42] for chains of rotors
and [1, 4, 7, 8, 18, 31, 41, 42] for chains of oscillators. From a rigorous point of view however, the mere
existence of an invariant measure is not evident, and has been proved only in special cases.

A lot of attention has been devoted to chains of classical oscillators with (nonlinear) nearest
neighbor interactions. In such models, each oscillator has a position qi ∈ R (we take one dimension
for simplicity), is attached to the reference frame with a pinning potential U(qi), and interacts with its
neighbors via some interaction potentials W (qi+1 − qi) and W (qi − qi−1).

It turns out that the properties of the chain depend crucially on the relative growth of W and U at
high energy. In the case of (asymptotically) polynomial potentials, and for Markovian heat baths, it has
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been shown [9,19,22–24,50] that if W grows faster than U , the system typically relaxes exponentially
fast to a NESS. The convergence is fast because, thanks to the strong interactions, the sites in the bulk
of the chain “feel” the heat baths effectively even though they are separated from them by other sites.

In the strongly pinned case, i.e., when U grows faster than W , the situation is more complicated.
When a given site has a lot of energy, the corresponding oscillator essentially feels only its pinning
potential U(qi) and not the interaction. Assume U(q) ∝ q2k with k > 1. An isolated oscillator
pinned with a potential U and with an energy E oscillates with a frequency that grows like E1/2−1/2k.
This scaling plays a central role, since the larger the energy at a site, the faster the corresponding
qi oscillates. But then, the interaction forces with the sites i + 1 and i − 1 oscillate very rapidly
and become ineffective at high energy. Therefore, a site (or a set of sites) with high energy tends to
decouple from the rest of the chain, so that energy can be “trapped” in the bulk. This mechanism
not only makes the convergence to the invariant measure slower, but it also makes the proof of its
existence harder. The case where W is quadratic is considered in [34]. There, Hairer and Mattingly
show that if U(q) ∝ q2k with k sufficiently large, no exponential convergence to an invariant measure
(if there is one) can take place. Moreover, they show that an invariant measure exists in the case of 3

oscillators when k > 3/2. The existence of a NESS for longer chains of oscillators remains an open
problem when the pinning dominates the interactions.

Chains of rotors are in fact closely related to strongly pinned oscillator chains: The frequency
of a rotor scales as E1/2, where E is its energy. This scaling corresponds to that of an oscillator in
the limit k → ∞, for the pinning U(q) ∝ q2k discussed above. In this sense, our chain of rotors
behaves as a chain of oscillators in the limit of “infinite pinning”, which is some kind of worst-case
scenario from the point of view of the asymptotic decoupling at high energy. On the other hand, the
compactness of the position-space (it is a torus) in the rotor case is technically very convenient. The
problems appearing with chains of strongly pinned oscillators are very similar to those faced with
chains of rotors, and so are the ideas involved to solve them.

The existence of an invariant measure for the chain of 3 rotors has been proved in [13] (reproduced
here in Chapter 3), as well as a stretched exponential upper bound of the kind e−c

√
t on the convergence

rate. The methods, which involve averaging the rapid oscillations of the central rotor, are inspired by
those of [34] for the chain of 3 oscillators.

In the present paper, we generalize the result of [13] to the case of 4 rotors, and obtain again a
bound e−c

√
t on the convergence rate. The main new difficulty in this generalization is the presence

of resonances among the two central rotors. When they both have a large energy, there are two fast
variables and some resonant terms make the averaging technique of [13] insufficient. A large portion
of the present paper is devoted to eliminating such resonant terms by using the rapid thermalization of
the external rotors.

It would be of course desirable to be able to work with a larger number of rotors. The present
paper uses explicit methods to deal with the averaging phenomena. We hope that by crystallizing
the essentials of our methods, longer chains can be handled in the same spirit. We expect that for
longer chains, the convergence rate is of the form exp(−ctk), for some exponent k ∈ (0, 1) which
depends on the length of the chain. We formulate a conjecture and explain the main difficulties for
longer chains in Remark 4.5.3.
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CHAPTER 4. CHAINS OF FOUR ROTORS

We now introduce the model and state the main results. In §4.2, we study the behavior of the
system when one of the two central rotors is fast, and construct a Lyapunov function in this region. In
§4.3, we do the same in the regime where both central rotors are fast. In §4.4 we construct a Lyapunov
function that is valid across all regimes, and in §4.5 we provide the technicalities necessary to obtain
the main result.

4.1.1. The model

q1

WL

q2

WC

q3

WR

q4

T1 T4

Figure 4.1 – A chain of four rotors with two heat baths at temperatures T1 and T4.

We study a model of 4 rotors, each given by a momentum pi ∈ R and an angle qi ∈ T = R/2πZ,
i = 1, . . . , 4. We write in the sequel q = (q1, . . . , q4) ∈ T4, p = (p1, . . . , p4) ∈ R4, and x = (q, p) ∈
Ω, where Ω = T4 × R4 is the phase space of the system. We consider the Hamiltonian

H(x) =
4∑

i=1

p2
i

2
+WL(q2 − q1) +WC(q3 − q2) +WR(q3 − q4) , (4.1.1)

whereWI : T→ R, I = L,C,R (standing for left, center and right) are smooth 2π-periodic interaction
potentials (see Figure 3.1).

Convention: Unless specified otherwise, the arguments of the potentials are always as above, namely
WL = WL(q2− q1), WC = WC(q3− q2) and WR = WR(q3− q4). The same applies to any function
with index L,C and R. Note that the argument for R is q3 − q4 (and not q4 − q3) since this choice
will lead to more symmetrical expressions between the sites 1 and 4.

To model the interaction with two heat baths, we add at each end of the chain a Langevin thermostat
at temperature Tb > 0, with dissipation constant γb > 0, b = 1, 4. Introducing the derivative of the
potentials wI = W ′I , I = L,C,R, the main object of our study is the SDE:

dqi = pi dt , i = 1, . . . , 4 ,

dp1 = (wL − γ1p1) dt+
√

2γ1T1dB1
t ,

dp2 = (wC − wL) dt ,

dp3 = −(wC + wR) dt ,

dp4 = (wR − γ4p4) dt+
√

2γ4T4dB4
t ,

(4.1.2)

where B1
t , B

4
t are independent standard Brownian motions. The generator of the semigroup associated
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to (4.1.2) reads

L =
4∑

i=1

pi∂qi + wL · (∂p1 − ∂p2) + wC · (∂p2 − ∂p3) + wR · (∂p4 − ∂p3)

+
∑

b=1,4

(
−γbpb∂pb + γbTb∂

2
pb

)
.

(4.1.3)

Remark 4.1.1. In contrast to Chapter 3, we do not allow for the presence of pinning potentials U(qi)

and of constant forces at the ends of the chain, although we believe that the main result still holds with
such modifications. While constant forces would be easy to handle, the addition of a pinning potential
would require some generalization of a technical result (Proposition 4.3.12) which we are currently
unable to provide (see Remark 4.3.13).

We consider the measure space (Ω,B), with the Borel σ-field B over Ω. The coefficients in (4.1.2)
are globally Lipschitz, and therefore the solutions are almost surely defined for all times and all initial
conditions. We denote the transition probability of the corresponding Markov process by P t(x, · ),
for all x ∈ Ω and t ≥ 0.

4.1.2. Main results

We will often refer to the sites 1 and 4 as the outer (or external) rotors, and the sites 2 and 3 as the
central rotors. We require the interactions from the inner rotors to the outer rotors to be non-degenerate
in the following sense:

Assumption 4.1.2. We assume that for I = L,R and for each s ∈ T, at least one of the derivatives
w

(k)
I (s), k ≥ 1 is non-zero.

This assumption is not very restrictive. In particular, it holds if all the potentials consist of finitely
many nonconstant Fourier modes.

Our main result is a statement about the speed of convergence to a unique stationary state of the
system (4.1.2). In order to state it, we introduce for each continuous function f : Ω → (0,∞) the
norm ‖ · ‖f on the space of signed Borel measures on Ω:

‖ν‖f = sup
|g|≤f

∫

Ω
gdν .

If f ≡ 1, we retrieve the total variation norm.

Theorem 4.1.3 (NESS and rate of convergence). Under Assumption 4.1.2, the Markov process
defined by (4.1.2) satisfies:

(i) The transition probabilities P t(x,dy) have a C∞((0,∞)× Ω× Ω) density pt(x, y).

(ii) There is a unique invariant measure π, and it has a smooth density.
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CHAPTER 4. CHAINS OF FOUR ROTORS

(iii) For all 0 ≤ θ1 < min(1/T1, 1/T4) and all θ2 > θ1, there exist constants C, λ > 0 such that
for all x = (q1, q2, . . . , p4) ∈ Ω and all t ≥ 0,

‖P t(x, · )− π‖eθ1H ≤ Ceθ2H(x)e−λt
1/2

. (4.1.4)

At thermal equilibrium, namely when T1 = T4 = 1/β for some β > 0, the invariant measure is
the Gibbs distribution with density e−βH(x)/Z, where Z is a normalization constant.

Theorem 4.1.3 will be proved in §4.5 with help of results of [16] and the existence of a Lyapunov
function, the properties of which are stated in

Theorem 4.1.4 (Lyapunov function). Let 0 < θ < min(1/T1, 1/T4). Under Assumption 4.1.2,
there is a function V : Ω→ [1,∞) satisfying:

(i) There are constants c1 > 0 and a ∈ (0, 1) such that

1 + eθH ≤ V ≤ c1(e|p2|
a

+ e|p3|
a
)eθH . (4.1.5)

(ii) There are a compact set K and constants c2, c3 > 0 such that

LV ≤ c21K − ϕ(V ) , (4.1.6)

with ϕ : [1,∞)→ (0,∞) the increasing, concave function defined by

ϕ(s) =
c3 s

2 + log(s)
. (4.1.7)

Most of the paper will be devoted to proving the existence of such a Lyapunov function.

Remark 4.1.5. We assume throughout that T1 and T4 are strictly positive. While the conclusions of
Theorem 4.1.4 remain true for T1 = T4 = 0 (with any θ > 0), part of the argument has to be changed
in this case, as sketched in Remark 4.3.17. The positivity of the temperatures is, however, essential
for Theorem 4.1.3; at zero temperature, the system is not irreducible, and none of the conclusions of
Theorem 4.1.3 hold.

4.1.3. Overview of the dynamics

To gain some insight into the strategy of the proof, we illustrate some essential features of the dynamics
(4.1.2). Since the exterior rotors (at sites 1 and 4) are directly damped by the−γbpb dt terms in (4.1.2),
we expect their energy to decrease rapidly with large probability. More specifically, for b = 1, 4, we
find that Lpb is equal to−γbpb plus some bounded terms, and thus we expect pb to decay exponentially
(in expectation value) when it is large. Therefore, the external rotors recover very fast from thermal
fluctuations, and will not be hard to deal with.

On the other hand, the central rotors are not damped directly, and feel the dissipative terms of
(4.1.2) only indirectly, by interacting with the outer rotors. The interesting issue appears when the
energy of the system is very large and mostly concentrated in one or both of the central rotors. If most
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of the energy is at site 2 (meaning that |p2| is much larger than all other momenta), the corresponding
rotor spins very rapidly, i.e., q2 moves very rapidly on T. But then, the interaction forces wL(q2 − q1)

and wC(q3−q2) oscillate rapidly, which causes the site to essentially decouple from its neighbors. The
same happens when most of the energy is at site 3, whenwC(q3−q2) andwR(q3−q4) oscillate rapidly.
And when both |p2| and |p3| are large and much larger than |p1| and |p4|, the forces wL(q2 − q1) and
wR(q3 − q4) are highly oscillatory, so that the central two rotors almost decouple from the outer ones
(the force wC might or might not oscillate depending on p2 and p3).

This asymptotic decoupling is the interesting feature of the model: in principle, if the central
rotors do not recover sufficiently fast from thermal fluctuations, the energy of the chain could grow
(in expectation value) without bounds. On the other hand, when their energy is large, the decoupling
phenomenon should make the central rotors less affected by the fluctuations of the heat baths. Our
results imply that both effects combine in a way that prevents overheating. See Remark 3.3.10 for
a quantitative discussion of these two effects for a chain of three rotors. See also [33] for a clear
exposition of the overheating problem in a related model.

Figure 4.2 illustrates the evolution1 of the momenta at two different time scales, starting with
p(0) = (50, 20, 30, 40). The upper graph shows that indeed p1 and p4 decrease very fast, and the
lower graph indicates that p2 and p3 remain large for a significantly longer time, but eventually also
decrease. Since for this initial condition p3 is larger than p2, the force wR oscillates faster than wL.
Therefore, p3 couples less effectively to the outer rotors (where the dissipation happens) than p2, and
hence p3 decreases more slowly.

If one were to look at these trajectories for much longer times, one would eventually observe some
fluctuations of arbitrary magnitude, followed by new recovery phases. But large fluctuations are very
rare.

Since the system is rapidly driven to small p1, p4, it is really the dynamics of (p2, p3) that plays
the most important role. We will often argue in terms of the 8-dimensional dynamics projected onto
the p2p3-plane. We illustrate some trajectories in this plane for several initial conditions in Figure 4.3.
To make the illustration readable, we used a very small temperature, so that the picture is dominated
by the deterministic dynamics.

The typical trajectory is as follows. Starting with some large |p2| and |p3|, the slower of the two
central rotors is damped faster than the other, so that the projection drifts rapidly towards one of the
axes. This leads to a regime where only one of the central rotors is fast, while the other is essentially
thermalized. The energy in this fast rotor is gradually dissipated, so that the orbit follows the axis
towards the origin.

The behavior that we observe in Figure 4.3 around the diagonal p2 = p3 far enough from the
origin is easily explained: in the “center of mass frame” of the two central rotors, we simply see two
interacting rotors that oscillate slowly in opposition, while being almost decoupled from the outer
rotors. More precisely, introducing Q = q3 − q2 ∈ T and P = p3 − p2 ∈ R, we see that (Q,P ) acts
approximately as a mathematical pendulum with potential 2WC, plus some rapidly oscillating (and

1 The numerical algorithm used in this paper is based on the one described in [37]. The time step is either 10−2 or 10−3

depending on the situation.
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Figure 4.2 – Evolution of the momenta p1, . . . , p4, for γ1 = γ4 = 1, T1 = 1, T4 = 10,
q(0) = (0, 0, 0, 0) and p(0) = (50, 20, 30, 40). The interaction potentials in the simulations here
are WI = − cos so that the forces are wI = sin, I = L,C,R.

therefore weak) interactions with the outer rotors:

Q̇ = P, Ṗ = −2wC(Q) + weak interactions.

Typically, if at first the energy in the center of mass frame is not large enough to make a “full turn,”
Q oscillates slowly around a minimum of WC, which corresponds to a back-and-forth exchange of
momentum between 2 and 3, and explains the strips that we observe around the diagonal. The two
central rotors are then gradually slowed down, until at some point the interaction with the external
rotors tears them apart.

The picture in the absence of noise (that is, when T1 = T4 = 0, which is not covered by our
assumptions) is quite different, due to some resonances. We discuss their nature in Appendix 4.6.
These resonances are washed away by the noise, and are therefore not visible here. They nevertheless
play an important role in our computations, as we will see.
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Figure 4.3 – The evolution of p2 and p3 for several initial conditions. The potentials are WI =
− cos, I = L,C,R. Furthermore, γ1 = γ4 = 1, T1 = 0.1, and T4 = 0.4. Each “×” sign indicates
the beginning of a trajectory.

4.1.4. Strategy

In order to obtain rigorous results about the dynamics and construct a Lyapunov function, we will
apply specific methods to each regime described above. We present them here in increasing order of
difficulty.

• When a significant part of the energy is contained in the outer rotors, then as discussed above,
the momenta of the two outer rotors essentially decrease exponentially fast. In this region,
the Lyapunov function will be eθH , and we will show that when p2

1 + p2
4 is large enough and

θ < min (1/T1, 1/T4), then LeθH . −eθH (Lemma 4.4.1).

• When most of the energy is contained at just one of the central sites, namely at site j = 2 or
j = 3, we will show that Lpj ∼ −p−3

j when averaged appropriately (Proposition 4.2.2). This
corresponds to the neighborhood of the axes in Figure 4.3. This case is essentially treated as in
Chapter 3. In this region, we use a Lyapunov function Vj ∼ e|pj |

a+ θ
2
p2j (with a ∈ (0, 1)) such

that LVj . −Vj/p2
j (Proposition 4.2.4).

• When both |p2| and |p3| are large and hold most of the energy, we do not approximate the
dynamics of p2 and p3 separately, but we consider instead the “central” Hamiltonian Hc =
p22
2 +

p23
2 + WL + WC + WR. We show that when averaged properly, LHc ∼ −p−2

2 − p−2
3

(Proposition 4.3.2). The Lyapunov function in this region is Vc ∼ Hce
θHc , and we show

(Proposition 4.3.5) that LVc . −Vc/Hc. Showing that LHc ∼ −p−2
2 − p−2

3 is the most
difficult part of our proof. The averaging of the rapidly oscillating forces will prove to be
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insufficient due to some resonances, which manifest themselves for some rational values of
p3/p2. We will consider separately the vicinity of the p2 = p3 diagonal, which is easy to deal
with (Lemma 4.3.7), and the case where |p3 − p2| is large, which requires substantially more
work (§4.3.3). In the latter case, we will use the rapid thermalization of the external rotors in
order to eliminate the resonant terms.

The factors 1/p2
2 and 1/Hc inLVj . −Vj/p2

j andLVc . −Vc/Hc are the cause of the logarithmic
contribution in (4.1.7), which leads to the subexponential convergence rate.

The final step (§4.4) is to combine eθH , V2, V3 and Vc (which each behave nicely in a given regime)
to obtain a Lyapunov function V that behaves nicely everywhere and satisfies the conclusions of
Theorem 4.1.4.

4.1.5. The domains

Following the discussion above, we decompose Ω into several sub-regions. This decomposition only
involves the momenta, and not the positions. All the sets in the decomposition are defined in the
complement of a ball BR of (large) radius R in p-space:

BR = T4 ×
{
p ∈ R4 :

4∑

i=1

p2
i ≤ R2

}
.

For convenience, we consider only R ≥
√

2 (see Remark 4.1.6). We also use (large) integers k, `,
and m which will be fixed in §4.4, and we assume throughout that

1 ≤ k < ` < m . (4.1.8)

The first regions we consider are along the p2 and p3 axes:

Ω2 = Ω2(k,R) =
{
x ∈ Ω : p2

2 > (p2
1 + p2

3 + p2
4)k
}
\BR ,

Ω3 = Ω3(k,R) =
{
x ∈ Ω : p2

3 > (p2
1 + p2

2 + p2
4)k
}
\BR .

(4.1.9)

The region Ω2 (resp. Ω3) corresponds to the configurations where most of the energy is concentrated
at site 2 (resp. 3). The next region corresponds to the configurations where most of the energy is
shared among the sites 2 and 3:

Ωc = Ωc(`,m,R) =
{
x ∈ Ω : p2

2 + p2
3 > (p2

1 + p2
4)m, p2`

3 > p2
2, p

2`
2 > p2

3

}
\BR (4.1.10)

(the conditions p2`
3 > p2

2 and p2`
2 > p2

3 ensure that both |p2| and |p3| diverge sufficiently fast when
‖p‖ → ∞ in Ωc). These regions are illustrated in Figure 4.4 and Figure 4.5. Note that Ω2,Ω3,Ωc do
intersect and do not cover Ω. However, for R large enough, the set Ω2 ∪ Ω3 ∪ Ωc ∪BR contains the
p2p3-plane (more precisely, the product of T4 and some neighborhood of the p2p3-plane in momentum
space), which is where the determining part of the dynamics lies, as discussed above.
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|p2|
|p3|

√
p21 + p24

Ωc

Ω2
Ω3

Figure 4.4 – A projection of the domains Ω2,Ω3,Ωc. The spherical surface represents
∑4
i=1 p

2
i =

C2 for some C > R.

BR

ΩcΩc

Ω2Ω2

Ω3

p2

p3

Figure 4.5 – The intersection of the sets Ω2,Ω3,Ωc with the p2p3-plane (the lower half-plane is
obtained by axial symmetry).

Remark 4.1.6. As a consequence of the restriction R ≥
√

2, we have Ωj(k
′, R′) ⊂ Ωj(k,R) for all

k′ ≥ k, R′ ≥ R, and j = 2, 3. Therefore, if a bound holds for all x ∈ Ωj(k,R), it also holds for
all x ∈ Ωj(k

′, R′). Similarly, at fixed `, we have Ωc(`,m
′, R′) ⊂ Ωc(`,m,R) for all m′ ≥ m and

R′ ≥ R. This allows us to increase k,m and R as needed (but not `). We also observe immediately
that for all k, `,m, and for j = 2, 3,

lim
R→∞

inf
x∈Ωj(k,R)

|pj | =∞ , (4.1.11)

lim
R→∞

inf
x∈Ωc(`,m,R)

|pj | =∞ . (4.1.12)
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4.1.6. Notations

Since averaging functions that rapidly oscillate in time will play an important role, we introduce the
qi-average 〈f〉i = 1

2π

∫ 2π
0 fdqi of a function f : Ω→ R over one period of qi. The result is a function

of p and {qj : j 6= i}. In the presence of a generic function f : T → R of one variable, we write
simply 〈f〉 = 1

2π

∫ 2π
0 f(s)ds, which is a constant.

For any function f : T→ R satisfying 〈f〉 = 0, one can find a unique integral F : T→ R such
that F ′ = f and 〈F 〉 = 0. More generally, we write f [j] for the jth integral of f that averages to zero.

Without loss of generality, we fix the additive constants of the potentials so that

〈WI〉 = 0, I = L,C,R . (4.1.13)

We also introduce two “effective dissipation constants”:

α2 = γ1

〈
W 2

L

〉
> 0 , α3 = γ4

〈
W 2

R

〉
> 0 , (4.1.14)

where the positivity follows from Assumption 4.1.2. Note also that because of (4.1.13), there is no
indeterminate additive constant in the αj .

Finally, throughout the proofs, c denotes a generic positive constant that can be each time different.
These constants are allowed to depend on the parameters and functions at hand, but not on the position
x. We sometimes also use c′ to emphasize that the constant has changed.

4.2. When only one of the central rotors is fast

We consider the regime where either |p2| or |p3| (but not both) is much larger than all other momenta.
The estimates for this regime are simple adaptations from §3.3.4, but we recall here the main ideas.

We start with some formal computations, thinking in terms of powers of p2 (resp. p3) only. Then,
we will restrict ourselves to the set Ω2(k,R) (resp. Ω3(k,R)) for some large enough k and R, so that
the other momenta are indeed “negligible” (see Lemma 4.2.3) compared to p2 (resp. p3).

4.2.1. Averaging with one fast variable

Assume that |p2| is much larger than the other momenta. We think in terms of the following fast-slow
decomposition: the variables q1, q3, q4 and p evolve slowly, while q2 evolves rapidly, since q̇2 = p2,
and p2 is large. In this regime, the variable q2 swipes through T many times before any other variable
changes significantly. The dynamics for short times is

p(t) ≈ p(0) ,

qi(t) ≈ qi(0) , i = 1, 3, 4 ,

q2(t) ≈ q2(0) + p2(0)t (mod 2π) .

(4.2.1)

We consider an observable f : Ω→ R and let g be defined by

Lf = g . (4.2.2)
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Under the approximation (4.2.1), the quantity g(x(t)) oscillates very rapidly around its q2-average
〈g〉2, which is a function of the slow variables q1, q3, q4 and p. We therefore expect the effective
equation Lf ≈ 〈g〉2 to describe the evolution of f over several periods of oscillations, and we now
show how to give a precise meaning to this approximation.

Although the stochastic terms (which appear as the second-order part of the differential operator
L) appear in the computations, they do not play an important conceptual role in this discussion; the
rapid oscillations that we average are of dynamical nature and are present regardless of the stochastic
forcing exerted by the heat baths.

The generator of the dynamics (4.2.1) is simply

L2 = p2∂q2 .

Decomposing the generator L defined in (4.1.3) as L = L2 + (L − L2) and considering powers
of p2, we view L2 as large, and L − L2 as small. Note that for all smooth h : Ω → R, we have
〈L2h〉2 = p2 〈∂q2h〉2 = 0 by periodicity, so that the image of L2 contains only functions with zero
q2-average. Consider next the indefinite integral G =

∫
(g − 〈g〉2)dq2 (we choose the integration

constant C(q1, q3, q4, p) to our convenience). By construction, we have L2(G/p2) = g−〈g〉2, so that

L

(
f − G

p2

)
= 〈g〉2 + (L2 − L)

G

p2
. (4.2.3)

By subtracting the “small” counterterm G/p2 from f , we have managed to replace g with its q2-
average in the right-hand side, plus some “small” correction. This procedure is what we refer to
as averaging with respect to q2, and it makes sense only in the regime where |p2| is very large. If
〈g〉2 = 0 and (L2 − L)(G/p2) is still oscillatory, the procedure must be repeated.

4.2.2. Application to the central momenta

We now apply this averaging method to the observable p2, in the regime where |p2| is very large. By
the definition of L, we find

Lp2 = wC − wL . (4.2.4)

We have 〈wC〉2 = 〈wL〉2 = 0. Moreover, ∂q2WC(q3 − q2) = −wC(q3 − q2) and ∂q2WL(q2 − q1) =

wL(q2 − q1). Thus, in the notation above, G =
∫

(wC − wL)dq2 = −WC −WL, and we introduce
the new variable

p
(1)
2 = p2 −

G

p2
= p2 +

WC +WL

p2
. (4.2.5)

By (4.2.3), we obtain

Lp
(1)
2 = −(L2 − L)

(
WC +WL

p2

)

=
p3wC − p1wL

p2
+
WCwL −WLwC +WLwL −WCwC

p2
2

.

(4.2.6)
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Observe that the right-hand side of (4.2.6) is still oscillatory, but now with an amplitude of order 1/p2,
which is much smaller than the amplitude of (4.2.4) when |p2| is large. Furthermore, the right-hand
side of (4.2.6) has zero mean, since 〈wC〉2 = 〈wL〉2 = 0 and

〈WCwL −WLwC +WLwL −WCwC〉2 =
1

2

〈
∂q2(WC +WL)2

〉
2

= 0 ,

by periodicity. In order to see a net effect, we need to average again. We consider now the observable
f = p

(1)
2 , and apply the same procedure. Instead of averaging the right-hand side of (4.2.6) in one

step, we first deal only with the terms of order −1 in p2, by introducing

p
(2)
2 = p

(1)
2 +

p1WL + p3WC

p2
2

. (4.2.7)

We postpone further computations to the proof of Proposition 4.2.2 below, and explain here the main
steps. We will see that Lp(2)

2 consists of terms of order −2 and −3 (by construction, the contribution
of order −1 disappears). The terms of order −2 have mean zero, and will be removed by introducing
a new variable p(3)

2 . We will then find that Lp(3)
2 contains terms of order −3 and −4. To replace the

terms of order −3 with their average (which is finally non-zero), we will introduce a function p(4)
2 .

This will complete the averaging procedure.

We illustrate in Figure 4.6 the time-dependence of p2, p
(1)
2 and p(2)

2 (slightly shifted for better
readability)2. Clearly, the oscillations of p(1)

2 are much smaller than those of p2, and we barely perceive
the oscillations of p(2)

2 , since they are smaller than the random fluctuations.

Figure 4.6 – The effect of the coordinate changes (4.2.5) and (4.2.7) on the effective oscillations.
Note that two of the curves are shifted vertically for easier readability.

Before we state the result of this averaging process, we introduce a convenient notation for the

2The irregularity of the envelope of p2 in Figure 4.6 is due to the randomness of the phases of the two oscillatory forces
wL and wC: they sometimes add up, and sometimes compensate each other. Note also that the trajectory of p(2)2 is rougher
than the other two, since the definition of p(2)2 involves p1, which is directly affected by the stochastic force.
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remainders.

Definition 4.2.1. Let f, g be two functions defined on the set {x ∈ Ω : p2 6= 0}. We say that f is
O2(g) if there is a polynomial z such that when |p2| is large enough,

|f(x)| ≤ z(p1, p3, p4)|g(x)| . (4.2.8)

The analogous notation O3 will be used when |p3| is large, and with a polynomial z(p1, p2, p4).

This notation reflects the fact that when most of the energy is at site 2 (resp. 3), one can forget
about the dependence on p1, p3, p4 (resp. p1, p2, p4), provided that it is at most polynomial (by the
compactness of T4, the position q is irrelevant). For example, the term (p1WL + p3WC)/p2

2 in (4.2.7)
is O2(p−2

2 ).

It is easy to realize that the Oj , j = 2, 3, follow the same basic rules as the usual O. In particular,
Oj(g1) +Oj(g2) = Oj(|g1|+ |g2|) and Oj(g1)Oj(g2) = Oj(g1g2).

Proposition 4.2.2. There are functions p̃2 and p̃3 of the form

p̃2 = p2 +
WL +WC

p2
+
p1WL + p3WC

p2
2

+O2(p−3
2 ) , (4.2.9)

p̃3 = p3 +
WR +WC

p3
+
p4WR + p2WC

p2
3

+O3(p−3
3 ) , (4.2.10)

such that for j = 2, 3,
Lp̃j = −αjp−3

j +Oj(p−4
j ) , (4.2.11)

where α2 > 0, α3 > 0 are defined in (4.1.14). Furthermore,

∂p1 p̃2 =
WL

p2
2

+O2(p−3
2 ) , ∂p4 p̃2 = O2(p−4

2 ) ,

∂p1 p̃3 = O3(p−4
3 ) , ∂p4 p̃3 =

WR

p2
3

+O3(p−3
3 ) .

(4.2.12)

Proof. It suffices to consider the case j = 2. The variable p̃2 is constructed as in §3.3.4. We continue
the averaging procedure started above. It is easy to check that Lp(2)

2 can be written as

Lp
(2)
2 =

1

p2
2

∂q2R1 +
2p1 (WLwL −WLwC) + 2p3 (WCwL −WCwC)

p3
2

,

with
R1 = −p2

1WL − p2
3WC − γ1p1W

[1]
L +W 2

L +WLWC +W 2
C +W

[1]
C wR .

Since it is a total derivative, the term of order −2 has zero q2-average, and by introducing p(3)
2 =
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p
(2)
2 − R1

p32
, we find

Lp
(3)
2 =

∂q2R2 + wLW
[1]
L γ1 + p1 (WCwL − 2WLwC) + p3 (2WCwL −WLwC)

p3
2

+O2(p−4
2 ) ,

(4.2.13)
with

R2 = −p3
1WL − p3

3WC − 3γ1p
2
1W

[1]
L − γ2

1p1W
[2]
L + 3p1W

2
L

+ 2γ1T1W
[1]
L + (p3 − p4)w′RW

[2]
C + 3p3W

2
C + 3p3W

[1]
C wR .

One can then average the terms of order -3 in (4.2.13). We have again 〈∂q2R2〉2 = 0 by periodicity,
and after integration by parts we find

〈WCwL〉2 = 〈wCWL〉2 and
〈
γ1wLW

[1]
L

〉
2

= −γ1

〈
W 2

L

〉
2

= −α2

(for the signs, recall that WL = WL(q2 − q1) and WC = WC(q3 − q2)). By adding appropriate
counterterms (not written explicitly), we obtain a function p(4)

2 = p
(3)
2 +O2(p−4

2 ) such that

Lp
(4)
2 = −α2

p3
2

+
〈p3WLwC − p1WCwL〉2

p3
2

+O2(p−4
2 ) .

The first term in the right-hand side is the one we are looking for, and we deal with the other term of
order −3 (which is non-zero) as follows. We observe that

〈p3WLwC − p1WCwL〉2 = (p1∂q1 + p3∂q3) 〈WLWC〉2 = L 〈WLWC〉2 ,

since 〈WLWC〉2 is a function of q1, q3 only. We then set

p̃2 = p
(4)
2 −

〈WLWC〉2
p3

2

and obtain (4.2.11). It is immediate by the construction of p̃2 that (4.2.12) holds.

We now introduce a lemma, which says that remainders of the kind Oj(|pj |−r), j = 2, 3, can be
made very small on Ωj(k,R), provided that the parameters k,R are large enough.

Lemma 4.2.3. Let j ∈ {2, 3} and r > 0. Fix ε > 0 and a function f = Oj(|pj |−r). Then, for all
sufficiently large k and R, we have

sup
x∈Ωj(k,R)

|f(x)| ≤ ε .

Proof. We prove the result for j = 2. By Definition 4.2.1 and (4.1.11), there is a polynomial z such
that for all large enough R and all k, we have |f | ≤ z(p1, p3, p4)|p2|−r on Ω2(k,R). But then, we
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have on the same set

|f | ≤ z(p1, p3, p4)

|p2|r
≤ c+ c(p2

1 + p2
3 + p2

4)N

|p2|r
≤ c+ c|p2|

2N
k

|p2|r
≤ c|p2|

2N
k
−r ,

where the second inequality is immediate for sufficiently large N , the third inequality comes from the
definition of Ω2, and the fourth inequality holds because |p2| is bounded away from zero on Ω2(k,R).
Recalling (4.1.11), we obtain the desired result when k is large enough so that 2N

k − r < − r
2 .

We now construct partial Lyapunov functions in the regions Ω2 and Ω3.

Proposition 4.2.4. Let 0 < θ < min(1/T1, 1/T4) and a ∈ (0, 1). Consider the functions3

V2 = e|p̃2|
a+ θ

2
p̃ 2
2
(
1 + F2(q2 − q1)/p3

2

)
,

V3 = e|p̃3|
a+ θ

2
p̃ 2
3
(
1 + F3(q3 − q4)/p3

3

)
,

(4.2.14)

with the p̃j of Proposition 4.2.2, and F2, F3 : T→ R such that respectively F ′2(s) = θ2γ1T1(
〈
W 2

L

〉
−

W 2
L(s)) and F ′3(s) = θ2γ4T4(

〈
W 2

R

〉
−W 2

R(s)). Then, there are constants C1, C2, C3 > 0, indepen-
dent of a ∈ (0, 1), such that for all sufficiently large k and R, we have for j = 2, 3 the following
inequalities on Ωj:

C1e
|pj |a+ θ

2
p2j < Vj < C2e

|pj |a+ θ
2
p2j , (4.2.15)

LVj ≤ −C3p
−2
j e|pj |

a+ θ
2
p2j . (4.2.16)

Proof. By symmetry, it suffices to prove the result for j = 2. In this proof, we do not allow the
O2 to depend on a ∈ (0, 1) (that is, we want the bound (4.2.8) to hold uniformly in a ∈ (0, 1)).
We start by proving (4.2.15). For large enough R, we have that |p2| > 2 on Ω2. Moreover, since
p̃2 = p2 +O2(p−1

2 ) and F2(q2 − q1)/p3
2 = O2(p−3

2 ), we have by Lemma 4.2.3 that for large enough
k,R, it holds on Ω2 that

|p̃2| > 1 and
∣∣∣∣
F2(q2 − q1)

p3
2

∣∣∣∣ <
1

2
. (4.2.17)

Moreover, since both |p̃2| and |p2| are > 1, (4.2.9) implies, for all a ∈ (0, 1),

||p̃2|a − |p2|a| ≤ |p̃ 2
2 − p2

2| =
∣∣2(WL +WC) +O2(p−1

2 )
∣∣ .

Since WL and WC are bounded, it follows from Lemma 4.2.3 that we can bound the right-hand side
by a constant, so that we find

ce|p2|
a+ θ

2
p22 < e|p̃2|

a+ θ
2
p̃ 2
2 < c′e|p2|

a+ θ
2
p22 , (4.2.18)

3 The role of the contribution |p̃j |a is to facilitate the patchwork that will lead to a global Lyapunov function in §4.4. The
corrections involving F2 and F3 help average some W 2

L and W 2
R that appear in the computations. Without this correction,

we would need a condition on θ that is more restrictive than the natural condition θ < min(1/T1, 1/T4).
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uniformly in a. By this, by the definition of V2, and by (4.2.17), we obtain (4.2.15). We now prove
(4.2.16). Let f(s) = e|s|

a+ θ
2
s2 and note that

L
(
e|p̃2|

a+ θ
2
p̃ 2
2
)

= Lf(p̃2) = f ′(p̃2)Lp̃2 + f ′′(p̃2)
∑

b=1,4

γbTb(∂pb p̃2)2 . (4.2.19)

By Proposition 4.2.2, we have on Ω2 that

f ′(p̃2)Lp̃2 = e|p̃2|
a+ θ

2
p̃ 2
2

(
a|p̃2|a
p̃2

+ θp̃2

)(
−α2p

−3
2 +O2(p−4

2 )
)

= e|p̃2|
a+ θ

2
p̃ 2
2
(
−α2θp

−2
2 +O2(p−3

2 )
)
,

(4.2.20)

where we have used that p̃2 = p2 +O2(p−1
2 ), and that a|p̃2|a−1 < 1 (since |p̃2| > 1), so that on Ω2,

the O2(p−3
2 ) obtained is indeed uniform in a. Next, one can verify that uniformly in a ∈ (0, 1) and

|p̃2| > 1,

f ′′(p̃2) ≤ f(p̃2)
(
θ2p̃ 2

2 + 2θ|p̃2|+ c
)
.

Moreover, by (4.2.12) we have
∑

b=1,4 γbTb(∂pb p̃2)2 = γ1T1W
2
L/p

4
2 +O2(p−5

2 ), so that on Ω2,

f ′′(p̃2)
∑

b=1,4

γbTb(∂pb p̃2)2 ≤ e|p̃2|a+ θ
2
p̃ 2
2
(
θ2p̃ 2

2 + 2θ|p̃2|+ c
)(

γ1T1
W 2

L

p4
2

+O2(p−5
2 )

)

= e|p̃2|
a+ θ

2
p̃ 2
2

(
θ2γ1T1

W 2
L

p2
2

+O2(p−3
2 )

)
.

(4.2.21)

Therefore, by (4.2.19), (4.2.20) and (4.2.21),

L
(
e|p̃2|

a+ θ
2
p̃ 2
2
)
≤ 1

p2
2

e|p̃2|
a+ θ

2
p̃ 2
2
(
−α2θ + θ2γ1T1W

2
L +O2(p−1

2 )
)
.

But then

LV2 =

(
1 +

F2(q2 − q1)

p3
2

)
L
(
e|p̃2|

a+ θ
2
p̃ 2
2

)
+ e|p̃2|

a+ θ
2
p̃ 2
2 L

(
F2(q2 − q1)

p3
2

)

≤
(

1 +
F2(q2 − q1)

p3
2

)
1

p2
2

e|p̃2|
a+ θ

2
p̃ 2
2
(
−α2θ + θ2γ1T1W

2
L +O2(p−1

2 )
)

+ e|p̃2|
a+ θ

2
p̃ 2
2

(
θ2γ1T1

( 〈
W 2

L

〉
2
−W 2

L

)

p2
2

+O2(p−3
2 )

)

=
1

p2
2

e|p̃2|
a+ θ

2
p̃ 2
2
(
−α2θ + θ2γ1T1

〈
W 2

L

〉
+O2(p−1

2 )
)
.

Using the definition of α2 in (4.1.14) and the condition on θ, we find that −α2θ + θ2γ1T1

〈
W 2

L

〉
is

negative. Using then Lemma 4.2.3 to make the O2(p−1
2 ) very small, and combining the result with

(4.2.18) completes the proof.
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4.3. When both central rotors are fast

We now study the regime where both |p2| and |p3| are large (not necessarily of the same order of
magnitude), and |p1| and |p4| are much smaller. We then have two fast variables: q2 and q3. As we
will see, this will lead to some trouble related to resonances, and averaging the rapid oscillations will
not be enough. We start with some formal computations thinking in terms of powers of p2 and p3, and
then restrict ourselves to the set Ωc(`,m,R) for some appropriate parameters.

4.3.1. Averaging with two fast variables: resonances

Now the fast-slow decomposition is as follows: q1, q4 and p are the slow variables, and q2, q3 are the
fast variables, with the approximate dynamics (for short times)

p(t) ≈ p(0) ,

qi(t) ≈ qi(0) , i = 1, 4 ,

q2(t) ≈ q2(0) + p2(0)t (mod 2π) ,

q3(t) ≈ q3(0) + p3(0)t (mod 2π) ,

(4.3.1)

generated by L2 + L3 = p2∂q2 + p3∂q3 , which we see as the most important contribution in L. Let
again f, g : Ω→ R and assume that

Lf = g .

We would like, as above, to add a correction to f in the left-hand side in order to replace g with its
average in the right-hand side. However, since the fast motion of (q2, q3) on T2 (in the dynamics
(4.3.1)) follows orbits that are open or closed depending on whether p2 and p3 are commensurable or
not, there seems to be no natural notion of “average of g” that is continuous with respect to the slow
variables.

Consider for example g(x) = sin(2q2 − q3). In our approximation, sin(2q2(t)− q3(t)) oscillates
with frequency (2p2 − p3)/2π. The average is zero when p3 6= 2p2, and sin(2q2(t)− q3(t)) remains
constant when p3 = 2p2. When p3 is close to 2p2, the oscillations are slow, and one cannot
simply average sin(2q2(t)− q3(t)). More generally, any smooth function g on Ω can be written as∑

n,m∈Z an,m sin(nq2 +mq3 +ϕn,m) for some coefficients an,m and ϕn,m which depend on the slow
variables q1, q4 and p. Each such term gives rise to problems close to the line p3/p2 = −n/m in the
p2p3-plane.

However, if g depends on q2 but not on q3, then no problem appears. In the approximation
(4.3.1), the quantity g(x(t)) then oscillates rapidly around 〈g〉2, which is then a function of the
slow variables q1, q4 and p. Then, as in §4.2.1, we use G =

∫
(g − 〈g〉2)dq2 (we choose the

integration constant independent of q3), so that (L2 + L3)(G/p2) = L2(G/p2) = g − 〈g〉2. Thus,
L(f−G/p2) = 〈g〉2 +(L−L2−L3)(f−G/p2), which has the desired form. Similarly, if g depends
on q3 but not on q2, we use the counterterm G/p3 with G =

∫
(g − 〈g〉3)dq3. And of course, if g can

be decomposed as the sum of a function not involving q3 and a function not involving q2, then we can
average each part separately and sum the two counterterms.
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It turns out that we will mostly encounter terms that depend only on one of the fast variables, and
are therefore easy to average. We will go as far as possible averaging such terms, and then introduce a
method to deal with the resonant terms (involving both q2 and q3) that appear.

4.3.2. Application to the central energy

As a starting point, we use the central energy

Hc =
p2

2

2
+
p2

3

2
+WL +WC +WR .

Definition 4.3.1. Let A∗ ≡ {x ∈ Ω : p2 6= 0, p3 6= 0} and let f, g be two functions defined on a set
A ⊂ A∗. We say that f is Oc(g) (on the set A) if there is a polynomial z such that for all x ∈ A with
min(|p2|, |p3|) large enough, we have

|f(x)| ≤ z(p1, p4)|g(x)| .

Unless explicitly stated otherwise, we take A = A∗.

We state the main result of this section.

Proposition 4.3.2. There is a function of the form

H̃c = Hc +
p1WL

p2
+
p4WR

p3
+Oc(|p2|−2 + |p3|−2) , (4.3.2)

such that
LH̃c = −α2

p2
2

− α3

p2
3

+Oc(|p2|−5/2 + |p3|−5/2) , (4.3.3)

with αj as defined in (4.1.14). Furthermore,

∂p1H̃c =
WL

p2
+Oc(p−2

2 ) , ∂p4H̃c =
WR

p3
+Oc(p−2

3 ) . (4.3.4)

In order to reduce the length of some symmetric formulae, we use the notation “+ ⇔” as a
shorthand for the other half of the terms with the indices exchanged as follows: 1 ⇔ 4, 2 ⇔ 3,
L⇔ R, and the sign of wC changed (due to the asymmetry of the argument q3 − q2 of WC).

In order to prepare the proof of Proposition 4.3.2, we proceed as follows. We first see that

L(Hc) = −p1wL − p4wR .

Since wL does not involve q3 and wR does not involve q2, it easy to find appropriate counterterms: we
introduce

H(1)
c = Hc +

p1WL

p2
+
p4WR

p3
, (4.3.5)
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and obtain

LH(1)
c =

−γ1p1WL − p2
1wL + wLWL

p2
+
p1WL(wL − wC)

p2
2

+⇔ .

The terms of order 1/p2 do not depend on q3 and have mean zero with respect to q2 (again wLWL =

∂q2W
2
L/2 has zero q2-average by periodicity). Similarly, the terms in 1/p3 do not involve q2 and

average to zero with respect to q3. Therefore, we introduce a next round of counterterms:

H(2)
c = H(1)

c +

(
γ1p1W

[1]
L + p2

1WL −W 2
L/2

p2
2

+⇔
)
,

and obtain

LH(2)
c =

(
−p3

1wL − 3γ1p
2
1WL − γ2

1p1W
[1]
L + 4p1WLwL + 2γ1T1WL

p2
2

+⇔
)

+
γ1wLW

[1]
L

p2
2

+
γ4wRW

[1]
R

p2
3

− p1WLwC

p2
2

+
p4WRwC

p2
3

+Oc(|p2|−3 + |p3|−3) .

(4.3.6)

The terms in the first line are easy to eliminate, since each one depends on only one of the fast
variables and averages to zero. The terms γ1wLW

[1]
L /p2

2 and γ4wRW
[1]
R /p2

3 are the ones we are
looking for, since after integrating by parts, we find

〈
γ1wLW

[1]
L

〉
2

= −γ1

〈
W 2

L

〉
2

= −α2 and〈
γ4wRW

[1]
R

〉
3

= −γ4

〈
W 2

R

〉
3

= −α3. The two “resonant” terms involving WLwC and WRwC are
more problematic and we leave them untouched for now. By introducing the appropriate counterterms
(which we do not write explicitly), we obtain a function H(3)

c = H
(2)
c +Oc(|p2|−3 + |p3|−3) such that

LH(3)
c = −α2

p2
2

− α3

p2
3

− p1WLwC

p2
2

+
p4WRwC

p2
3

+Oc(|p2|−3 + |p3|−3) . (4.3.7)

In order to obtain (4.3.3), we must get rid of the two “mixed” terms involving WLwC and WRwC,
which are of the same order as the dissipative contributions involving α2 and α3. Since they each
depend on both q2 and q3, these terms are not easy to get rid of, due to the resonance phenomenon
discussed above. In fact, as discussed in Appendix 4.6, these resonances have a physical meaning.
Their effect becomes clearly visible when T1 = T4 = 0 (which is not covered by our assumptions):
they alter the dynamics in the p2p3-plane, but do not prevent Hc from decreasing in average. We
postpone to §4.3.3 the construction of the counterterms that will eliminate these resonant terms.

We introduce next two technical lemmata and an application of Proposition 4.3.2. The following
lemma is analogous to Lemma 4.2.3.

Lemma 4.3.3. Let j ∈ {2, 3} and r > 0. Fix an integer ` > 0, and an ε > 0. Let f be some
Oc(|pj |−r) on the set A∗ = {x ∈ Ω : p2 6= 0, p3 6= 0}. Then, for all sufficiently large m and R, we
have

sup
x∈Ωc(`,m,R)

|f(x)| < ε .
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Proof. We prove the result for f = Oc(|p2|−r) and proceed as in Lemma 4.2.3. By Definition 4.3.1
and (4.1.12), there is a polynomial z such that for all m and all sufficiently large R, we have on
Ωc(`,m,R),

|f | ≤ z(p1, p4)

|p2|r
≤ c+ c(p2

1 + p2
4)N

|p2|r
≤ c+ c(p2

2 + p2
3)

N
m

|p2|r

≤ c+ (p2
2 + p2`

2 )
N
m

|p2|r
≤ c+ c|p2|

2`N
m

|p2|r
≤ c|p2|

2`N
m
−r ,

where we choose N large enough and use the definition of Ωc. By (4.1.12), we conclude that the
desired result holds for m large enough so that 2`N

m − r < − r
2 .

Lemma 4.3.4. Let f = Oc(pz12 p
z2
3 ) for some z1, z2 ∈ R such that z1, z2 have the same sign. Then,

f = Oc(|p2|z1+z2 + |p3|z1+z2).

Proof. We apply Young’s inequality in the form xy ≤ xa + yb with a = z1+z2
z1

> 1, b = z1+z2
z2

> 1,
and x = |p2|z1 , y = |p3|z2 . We obtain |p2|z1 |p3|z2 ≤ |p2|z1+z2 + |p3|z1+z2 . This, and the definition
of Oc, complete the proof.

As a consequence of Proposition 4.3.2 we have:

Proposition 4.3.5. Let 0 < θ < min(1/T1, 1/T4) and define

Vc = H̃ce
θH̃c

(
1 +

F2(q2 − q1)

p3
2

+
F3(q3 − q4)

p3
3

)
,

with the H̃c of Proposition 4.3.2 and F2, F3 as in Proposition 4.2.4. Let ` > 1 be a fixed integer. Then,
there are constants C4, C5, C6 > 0 such that for all large enough m and R, the following inequalities
hold on Ωc(m, `,R):

C4(p2
2 + p2

3)e
θ
2

(p22+p23) < Vc < C5(p2
2 + p2

3)e
θ
2

(p22+p23) , (4.3.8)

LVc ≤ −C6e
θ
2

(p22+p23) . (4.3.9)

Proof. We first prove (4.3.8). By (4.3.2), the boundedness of the potentials, and Lemma 4.3.3, we
have for m,R large enough that on Ωc,

∣∣∣∣H̃c −
p2

2

2
− p2

3

2

∣∣∣∣ < c and
∣∣∣∣
F2(q2 − q1)

p3
2

+
F3(q3 − q4)

p3
3

∣∣∣∣ <
1

2
. (4.3.10)

In addition, if m,R are large enough, p2
2 + p2

3 is large on Ωc, so that the first part of (4.3.10) implies
that c(p2

2 + p2
3) < H̃c < c′(p2

2 + p2
3). This and (4.3.10) imply (4.3.8).
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We next prove (4.3.9). Define f(s) = seθs. By Proposition 4.3.2,

L
(
H̃ce

θH̃c
)

= Lf(H̃c) = f ′(H̃c)LH̃c + f ′′(H̃c)
∑

b=1,4

γbTb(∂pbH̃c)
2

= eθH̃c
(
θH̃c + 1

)(
−α2

p2
2

− α3

p2
3

+Oc(|p2|−5/2 + |p3|−5/2)

)

+ eθH̃c
(
θ2H̃c + 2θ

)(
γ1T1

W 2
L

p2
2

+ γ4T4
W 2

R

p2
3

+Oc(|p2|−3 + |p3|−3)

)
.

(4.3.11)

Now observe that for any C ∈ R, we have

H̃c + C =
p2

2 + p2
3

2
+Oc(1) =

p2
2 + p2

3

2

(
1 +Oc(p−2

2 + p−2
3 )
)
,

since trivially (p2
2 + p2

3)−1 ≤ p−2
2 + p−2

3 . But then, by (4.3.11) and Lemma 4.3.4, we find that

L
(
H̃ce

θH̃c
)
≤ eθH̃c p

2
2 + p2

3

2

(
θ2γ1T1W

2
L − θα2 +Oc(|p2|−1/2)

p2
2

+⇔
)
.

As in the proof of Proposition 4.2.4, the corrections involving F2 and F3 replace the oscillatory terms
W 2

L and W 2
R with their averages:

LVc = L
(
H̃ce

θH̃c
)(

1 +
F2

p3
2

+
F3

p3
3

)
+ H̃ce

θH̃cL

(
F2

p3
2

+
F3

p3
3

)

≤ eθH̃c p
2
2 + p2

3

2

(
θ2γ1T1

〈
W 2

L

〉
− θα2 +Oc(|p2|−1/2)

p2
2

+⇔
)
.

Therefore, by the definition (4.1.14) of αj and the condition on θ, we have

LVc ≤ eθH̃c
p2

2 + p2
3

2

(
−c+Oc(|p2|−1/2)

p2
2

+
−c+Oc(|p3|−1/2)

p2
3

)
.

Finally, by Lemma 4.3.3, and using that (p2
2 + p2

3)(p−2
2 + p−2

3 ) > 2, we indeed obtain (4.3.9).

We now return to the proof of Proposition 4.3.2. We need to find some counterterms to eliminate
the mixed terms in (4.3.7). For this, we use a subdivision of A∗ = {x ∈ Ω : p2 6= 0, p3 6= 0} into 3
disjoint pieces, as shown in Figure 4.7:

A1 = {x ∈ A∗ : |p2 + p3| ≥ (p2 − p3)2} ,
A2 =

{
x ∈ A∗ : (p2 − p3)2 > |p2 + p3| > (p2 − p3)2/2

}
,

A3 =
{
x ∈ A∗ : (p2 − p3)2 ≥ 2|p2 + p3|

}
.

(4.3.12)

By construction, A1 is close to the diagonal p2 = p3, A3 is far from it, and A2 is some transition
region.

88



CHAPTER 4. CHAINS OF FOUR ROTORS

A1

A2

A2

A3

A3

A3

A3A1

p2

p3

Figure 4.7 – Projection of the partition A∗ = A1 ∪ A2 ∪ A3 onto the p2p3-plane. Note that the
sets A1, A2 and A3 do not include the p2 and p3 axes.

Lemma 4.3.6. The following holds:

(i) On A1 ∪A2, the quantity |p2 − p3| is both Oc(
√
|p2|) and Oc(

√
|p3|).

(ii) On A2 ∪A3, the quantity |p2 − p3|−1 is both Oc(|p2|−1/2) and Oc(|p3|−1/2).

Proof. Trivially, (i) holds because on A1∪A2, we have the scaling |p3−p2| .
√
|p2 + p3| ∼ √p2 ∼√

p3. To obtain (ii), observe that either p2 and p3 have the same sign and by the definition of A2 ∪A3,
|p2 − p3| &

√
|p2 + p3| =

√
|p2|+ |p3| ≥ max(

√
|p2|,

√
|p3|), or they have a different sign and

|p2 − p3| = |p2|+ |p3| ≥ max(|p2|, |p3|) & max(
√
|p2|,

√
|p3|). In both cases, we have the desired

bound.

We first work on A1 ∪ A2. In this region, p2 and p3 are close to each other, and are both large
in absolute value. It is then easy to find a counterterm for p1WLwC/p

2
2 and p4WRwC/p

2
3. Indeed,

WL and WR oscillate very rapidly (the respective frequencies are approximately p2/2π and p3/2π),
while wC oscillates only “moderately”, with frequency (p3 − p2)/2π. One can then simply average
the rapidly oscillating part, and obtain

Lemma 4.3.7. Let R12 = p1W
[1]
L wC/p

3
2 − p4W

[1]
R wC/p

3
3. Then,

LR12 =
p1WLwC

p2
2

− p4WRwC

p2
3

+Oc(|p2|−5/2 + |p3|−5/2) (on A1 ∪A2) .

Proof. We have for the first term:

L
p1W

[1]
L wC

p3
2

=
p1WLwC

p2
2

+
p1W

[1]
L w′C · (p3 − p2)

p3
2

+Oc(p−3
2 )

=
p1WLwC

p2
2

+Oc(|p2|−5/2) ,
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where the last equality uses Lemma 4.3.6 (i). A similar computation for the second term completes
the proof.

The counterterm R12 works well on A1 ∪A2 because |p3 − p2| is small compared to p2 and p3.
We now have to find a counterterm R23 that works on A2 ∪A3 and then patch the two counterterms
together on A2. We state the properties of the counterterm R23 in the following lemma, but postpone
its construction to §4.3.3.

Lemma 4.3.8. There is a function R23 = Oc(|p2|−2 + |p3|−2) defined on A2 ∪A3 such that

LR23 =
p1WLwC

p2
2

− p4WRwC

p2
3

+Oc(|p2|−5/2 + |p3|−5/2) (on A2 ∪A3)

and
∂p1R23 = Oc(p−2

2 ) and ∂p4R23 = Oc(p−2
3 ) . (4.3.13)

Assuming that Lemma 4.3.8 is proved, we next join the two counterterms R12 and R23 by a
smooth interpolation on A2 in order to prove Proposition 4.3.2.

Proof of Proposition 4.3.2. We introduce a smooth function ρ : R ∪ {−∞,∞} → [0, 1] such that
ρ(x) = 1 when |x| ≤ 1 and ρ(x) = 0 when |x| ≥ 2. We then consider the function

ρ

(
(p3 − p2)2

p2 + p3

)
, (4.3.14)

which is well-defined and smooth on the set A∗ = A1 ∪ A2 ∪ A3 = {x ∈ Ω : p2 6= 0, p3 6= 0}.
Moreover, it is equal to 1 on A1, and 0 on A3. We now omit the arguments and simply write ρ instead
of (4.3.14). Using Lemma 4.3.7 and Lemma 4.3.8, we obtain

L (ρR12 + (1− ρ)R23) = ρLR12 + (1− ρ)LR23 + (R12 −R23)Lρ

=
p1WLwC

p2
2

− p4WRwC

p2
3

+Oc(|p2|−5/2 + |p3|−5/2) + (R12 −R23)Lρ .
(4.3.15)

Observe next that

Lρ = ρ′·
(

2
(p3 − p2)

p2 + p3
(wL − wR − 2wC) +

(p3 − p2)2

(p2 + p3)2
(wL + wR)

)
. (4.3.16)

Since ρ′ has support in A2, where |p3 − p2| ∼ |p2 + p3|
1
2 ∼ |p2|1/2 ∼ |p3|1/2, we see that Lρ is

simultaneously Oc(|p2 + p3|−1/2), Oc(|p2|−1/2) and Oc(|p3|−1/2). But then, by (4.3.15) and using
that R12 −R23 = Oc(|p2|−2 + |p3|−2), we find

L (ρR12 + (1− ρ)R23) =
p1WLwC

p2
2

− p4WRwC

p2
3

+Oc(|p2|−5/2 + |p3|−5/2) . (4.3.17)

We set now
H̃c = H(3)

c + ρR12 + (1− ρ)R23 .
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From (4.3.17) and (4.3.7), we deduce immediately that (4.3.3) holds. Moreover, (4.3.4) follows from
(4.3.13), the expressions for H(3)

c and R12, and the fact that ρ does not depend on p1 and p4. This
completes the proof of Proposition 4.3.2.

4.3.3. Fully decoupled dynamics approximation

We construct here the counterterm R23 of Lemma 4.3.8, which eliminates the two resonant terms
−p1WLwC/p

2
2 and p4WRwC/p

2
3 on A2 ∪ A3 when both |p2| and |p3| are large. In this regime, all

three interaction forces wL, wC, wR oscillate rapidly (since |p2|, |p3 − p2| and |p3| are all large) and
we expect the dynamics to be well approximated by the following decoupled dynamics, where all the
interaction forces are removed.

Definition 4.3.9. We call decoupled dynamics the SDE

dqi = pi dt , i = 1, . . . , 4 ,

dpb = −γbpb dt+
√

2γbTbdB
b
t , b = 1, 4 ,

dpj = 0 dt , j = 2, 3 ,

(4.3.18)

with generator

L̄ =
4∑

i=1

pi∂qi +
∑

b=1,4

(
−γbpb∂pb + γbTb∂

2
pb

)
, (4.3.19)

and denote by Ēx the corresponding expectation value with initial condition x ∈ Ω.

We will construct two functions U1, U4 such that L̄U1 = p1WLwC and L̄U4 = −p4WRwC. Then,
we will introduce a change of variable x 7→ x̄(x) such that x̄ approximately obeys the decoupled
dynamics, so that L(U1(x̄)) ≈ p1WLwC and L(U4(x̄)) ≈ −p4WRwC in the regime of interest.
Finally, we will show that the choice R23(x) = U1(x̄)/p2

2 + U4(x̄)/p2
3 satisfies the conclusions of

Lemma 4.3.8.
The decoupled dynamics can be integrated explicitly for any initial condition x = (q1, . . . , p4) ∈

Ω. For the outer rotors b = 1, 4, we have

pb(t) = e−γbtpb +
√

2γbTb

∫ t

0
e−(t−s)γbdBb

s ,

qb(t) = qb +
1− e−γbt

γb
pb +

√
2γbTb

∫ t

0

(∫ s

0
e−(s−s′)γbdBb

s′

)
ds ,

(4.3.20)

and for the central ones (j = 2, 3) we simply have

pj(t) = pj ,

qj(t) = qj + pjt (mod 2π) ,
(4.3.21)

which is deterministic. We decompose the variables between the central and external rotors as

x = (xe, xc) with xe = (q1, p1, q4, p4) and xc = (q2, p2, q3, p3) .
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Under the decoupled dynamics, the two processes xe(t) and xc(t) are independent and xc(t) is
deterministic. Moreover, under the decoupled dynamics, xe(t) has the generator

L̄e =
∑

b=1,4

(pb∂qb − γbpb∂pb + γbTb∂
2
pb

) ,

and admits the invariant probability measure π̄e on (T× R)2 given by

dπ̄e(xe) =
1

Z
e
− p21

2T1
− p24

2T4 dq1dp1dq4dp4 ,

where Z is a normalization constant (recall that T1, T4 > 0 by assumption).

Definition 4.3.10. We denote by S the set of functions f ∈ C∞(Ω,R) for which the norm

|||f ||| = sup
x∈Ω

|f(x)|
1 + p2

1 + p2
4

(4.3.22)

is finite. We denote by S0 the subspace of functions f ∈ S for which
∫

(T×R)2
f(xe, xc)dπ̄e(xe) = 0 for all xc ∈ (T× R)2 .

We will later consider f = p1WLwC and f = −p4WRwC, which are manifestly in S0.

Lemma 4.3.11. There are constants C∗, c∗ > 0 such that for all f ∈ S0, all x ∈ Ω, and all t ≥ 0,
∣∣Ēxf(x(t))

∣∣ ≤ C∗e−c∗t|||f |||
(
1 + p2

1 + p2
4

)
. (4.3.23)

Proof. As mentioned, xe(t) and xc(t) are independent under the decoupled dynamics. Introducing
the expectation value Ēe with respect to the process xe(t) under the decoupled dynamics, we obtain
that for any function f on Ω,

Ēxf(x(t)) = Ēexef(xe(t), xc(t)) , (4.3.24)

where xc(t) is (deterministically) given by (4.3.21).

The process xe(t) under the decoupled dynamics is exponentially ergodic, with the unique
invariant measure π̄e defined above. Indeed, one can check explicitly that this measure is invariant,
and introducing the Lyapunov function Ve(xe) = 1 + p2

1 + p2
4, we easily obtain that L̄eVe ≤ c− cVe.

It follows from [44, Theorem 6.1]4 that there are two constants C∗, c∗ > 0 such that for any function
g : (T× R)2 → R such that g/Ve is bounded,

sup
xe

|Ēexeg(xe(t))− π̄e(g)|
1 + p2

1 + p2
4

≤ C∗e−c∗t sup
xe

|g(xe)− π̄e(g)|
1 + p2

1 + p2
4

. (4.3.25)

4One should also check that there is a skeleton with respect to which every compact set is petite. This is obvious, but can
be proved with methods similar to those of §3.5.2.
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Let now f ∈ S0. For any fixed v ∈ (T× R)2, we apply (4.3.25) to the function gv(xe) = f(xe, v).
Since f ∈ S0, we have π̄e(gv) = 0. Therefore, for any t ≥ 0,

sup
xe

|Ēexef(xe(t), v)|
1 + p2

1 + p2
4

≤ C∗e−c∗t sup
xe

|f(xe, v)|
1 + p2

1 + p2
4

≤ C∗e−c∗t|||f ||| . (4.3.26)

This holds for all v, and in particular for v = xc(t). Therefore, by (4.3.24), we have the desired
result.

The next proposition constructs a right inverse of L̄ on S0 [45–47]. We use here the notation

x = (x1, . . . , x8) = (q1, . . . , q4, p1, . . . , p4) . (4.3.27)

Proposition 4.3.12. Let f ∈ S0 be a function such that for all multi-indices a, we have ∂af ∈ S0,
and let

(K̄f)(x) = −
∫ ∞

0
Ēxf(x(t)) dt . (4.3.28)

Then:

(i) K̄f and its derivatives of all orders are in S.

(ii) We have
L̄K̄f = f .

Proof. By Lemma 4.3.11, the integral (4.3.28) converges absolutely for all x and we have K̄f ∈ S.
We now prove the result about the derivatives. By (4.3.20) and (4.3.21), we can write

∂xi(t)

∂xj
= hij(t) , (4.3.29)

where the hij are deterministic functions of t only that grow at most linearly (namely 0, 1, e−γbt,
(1− e−γbt)/γb and t). We then have

∂

∂xj

(
Ēxf(x(t))

)
=

8∑

i=1

hij(t)Ēx[(∂if)(x(t))] .

For the derivatives of order n, we find by induction

∂j1,...,jn
(
Ēxf(x(t))

)
=
∑

i1,...,in

( n∏

k=1

hikjk(t)
)
Ēx[(∂i1,...,inf)(x(t))] , (4.3.30)

where the sum is taken over all (i1, . . . , in) ∈ {1, 2, . . . , 8}n. Since by assumption ∂i1,...,inf ∈ S0,
we have by Lemma 4.3.11 that

∣∣Ēx[(∂i1,...,inf)(x(t))]
∣∣ ≤ ce−c∗t

(
1 + p2

1 + p2
4

)
.
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But then, by (4.3.30), we have

∣∣∂i1,...,inK̄f(x)
∣∣ =

∣∣∣∣
∫ ∞

0
∂i1,...,in

(
Ēxf(x(t))

)
dt

∣∣∣∣

≤ c
(
1 + p2

1 + p2
4

) ∑

i1,...,in

∣∣∣∣∣

∫ ∞

0

( n∏

k=1

hikjk(t)
)
e−c∗t dt

∣∣∣∣∣ .

Since the hij grow at most linearly, the time-integrals in the right-hand side converge. Therefore, K̄f
is C∞ and (i) holds.

For the second statement, we observe that

L̄K̄f = −
∫ ∞

0
L̄Ēxf(x(t))dt = −

∫ ∞

0

d

dt
Ēxf(x(t))dt = Ēxf(x(0)) = f(x) ,

where we have used that limt→∞ Exf(x(t)) = 0 by (4.3.26).

Remark 4.3.13. The proof of Proposition 4.3.12, and in particular (4.3.29), relies on the linear
nature of the decoupled dynamics. If we add constant forces τ1 and τ4 at the ends of the chain
(as in Chapter 3), the method above applies with little modification, and with the replacements
pb → pb − τb/γb, b = 1, 4, in the invariant measure π̄e. However, if we add pinning potentials of
the kind U(qi), the decoupled dynamics cannot be solved explicitly, and we do not have (4.3.29) for
some deterministic functions hij(t). Although we believe there exists an analog of Proposition 4.3.12
in that case, we are currently unable to provide it. The situation is even worse in the simultaneous
presence of constant forces and pinning potentials. In that case, the expression of π̄e is not known [29],
which makes it difficult to decide whether a given function is in S0. (Of course, although there is no
difficulty there, the averaging of p2, p3 and Hc also needs to be adapted to accommodate for such
modifications of the model.)

We now have an inverse of L̄ on a given class of functions. We next use it to find an approximate
inverse of L. The key is to introduce a change of variables x̄ = (q̄1, p̄1, . . . , q̄4, p̄4) such that for nice
enough functions f , it holds that L(f(x̄)) ≈ (L̄f)(x̄) in the regime of interest. Here and in the sequel,
it is always understood that x̄ is viewed as a function of x. We compare the actions of L and L̄ in
Lemma 4.3.14. We state this lemma with the notation (4.3.27), and write generically

L =
∑

i

(bi(x)∂i + σi∂
2
i ) and L̄ =

∑

i

(b̄i(x)∂i + σi∂
2
i ) . (4.3.31)

In our case, only σ5 and σ8, which correspond to the variables p1 and p4, are non-zero.

Lemma 4.3.14. Consider a change of coordinates x 7→ x̄(x) = x + s(x), defined on some set
Ω0 ⊂ Ω. Assume that for all j,

L(x̄j) = b̄j(x̄) + εj(x)

for some εj . Then, for any smooth function h, we have for all x ∈ Ω0 that

L(h(x̄)) = (L̄h)(x̄) + ζ(x) ,
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where

ζ(x) =
∑

j

(∂jh)(x̄)εj(x)+2
∑

i,k

σi(∂ikh)(x̄)∂isk(x)+
∑

i,j,k

σi(∂jkh)(x̄)∂isj(x)∂isk(x) . (4.3.32)

Proof. We do the computation for the case of just one variable x ∈ R. Let g(x) = x̄(x) = x+ s(x).
From the definition of L and L̄, and since by assumption Lg = b̄ ◦ g + ε, we find

L(h ◦ g) = (h′ ◦ g) · Lg + σ · (h′′ ◦ g) · g′2

= (h′ ◦ g) · (b̄ ◦ g + ε) + σ · (h′′ ◦ g) · g′2

= (L̄h) ◦ g + (h′ ◦ g) · ε+ σ · (h′′ ◦ g) · (g′2 − 1)

= (L̄h) ◦ g + (h′ ◦ g) · ε+ σ · (h′′ ◦ g) · (2s′ + s′2) .

The desired result follows from generalizing to the multivariate case.

We consider now the following change of variables defined on A2 ∪A3:

q̄1 = q1 , p̄1 = p1 −
WL (q2 − q1)

p2
= p1 +Oc(p−1

2 ) ,

q̄2 = q2 , p̄2 = p2 +
WL (q2 − q1)

p2
− WC (q3 − q2)

p3 − p2
= p2 +Oc(|p2|−1/2) ,

(4.3.33)

with analogous expressions for the indices 3, 4. Here, we have used Lemma 4.3.6 (ii) to replace
WL/(p3 − p2) with Oc(|p2|−1/2). Straightforward computations show that, on A2 ∪A3,

L(p̄1) = −γ1p1 +Oc(p−1
2 ) = −γ1p̄1 +Oc(p−1

2 ) ,

L(q̄1) = p1 = p̄1 +Oc(p−1
2 ) ,

L(p̄2) = Oc(|p2|−1 + (p2 − p3)−2) = Oc(p−1
2 ) ,

L(q̄2) = p2 = p̄2 +Oc(|p2|−1/2) ,

(4.3.34)

with similar expressions for the indices 3, 4 (we have again used Lemma 4.3.6 (ii)).
While one could choose a more refined change of variables by going to higher orders, the change

(4.3.33) is good enough for our purpose.

Lemma 4.3.15. Let f ∈ S. Then f is Oc(1). Moreover, given any function ξ : Ω→ [0, 1], we have
that f

(
x+ ξ(x)(x̄− x)

)
= Oc(1) on A2 ∪A3. In particular, f(x̄) = Oc(1) on A2 ∪A3.

Proof. By assumption, |f(x)| ≤ |||f |||(1 + p2
1 + p2

4) on Ω, so that immediately f = Oc(1). Moreover,
f
(
x+ ξ(x)(x̄− x)

)
is well-defined on A2 ∪A3, and

∣∣f
(
x+ ξ(x)(x̄− x)

)∣∣ ≤ |||f |||
(

1 +

(
p1 − ξ(x)

WL

p2

)2

+

(
p4 − ξ(x)

WR

p3

)2
)
,

which is indeed a Oc(1) on this set. The claim about f(x̄) follows from the choice ξ ≡ 1.
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Proposition 4.3.16. Let f satisfy the assumptions of Proposition 4.3.12, and consider the change of
coordinates (4.3.33). Let h = K̄f . Then, on the set A2 ∪ A3 (meaning that we take x ∈ A2 ∪ A3,
and not necessarily x̄ ∈ A2 ∪A3), we have h(x̄) = Oc(1) and

L(h(x̄)) = f(x) +Oc(|p2|−1/2 + |p3|−1/2) .

Proof. We use again the notations x = (x1, . . . , x8) = (q1, . . . , q4, p1, . . . , p4) and (4.3.31). We
apply Lemma 4.3.14 with the coordinate change x̄ = x+ s(x) defined by (4.3.33). Then, the sj are
given by (4.3.33), and the εj are given by (4.3.34). Observe then that on A2 ∪A3, all the sj and εj
and are at most Oc(|p2|−1/2) or Oc(|p3|−1/2). The only non-zero σi are σ5 = γ1T1 and σ8 = γ4T4.
Moreover, ∂x5sj = ∂p1sj = 0 for all j ∈ {1, 2, . . . , 8}, and similarly ∂x8sj = ∂p4sj = 0. Therefore,
from (4.3.32) we are left with ζ(x) =

∑
j(∂jh)(x̄)εj(x). We now apply this to the function h = K̄f .

By Proposition 4.3.12, we have L̄h = f , so that

L(h(x̄)) = f(x̄) +
∑

j

(∂jh)(x̄)εj(x) . (4.3.35)

To obtain the desired results, it remains to make the following two observations. First, by the mean
value theorem, there is for each x some ξ(x) ∈ [0, 1] such that on A2 ∪A3,

f(x̄)− f(x) =
∑

j

sj(x)(∂jf)(x+ ξ(x)s(x)) = Oc(|p2|−1/2 + |p3|−1/2) , (4.3.36)

where we have applied Lemma 4.3.15 to ∂jf , which is in S by assumption. Secondly, using
Lemma 4.3.15 and the fact that ∂jh ∈ S by Proposition 4.3.12, we find

∑

j

(∂jh)(x̄)εj(x) = Oc(|p2|−1/2 + |p3|−1/2) ,

which, together with (4.3.35) and (4.3.36), completes the proof.

We are now ready for the

Proof of Lemma 4.3.8. Let

U1(q1, . . . , q3, p1, . . . , p3) = K̄(p1WL(q2 − q1)wC(q3 − q2)) ,

U4(q2, . . . , q4, p2, . . . , p4) = K̄(−p4WR(q3 − q4)wC(q3 − q2)) ,

and

R23(x) =
U1(x̄)

p2
2

+
U4(x̄)

p2
3

.

That U1 depends only on (q1, . . . , q3, p1, . . . , p3) follows from the independence of the four rotors
under the decoupled dynamics. Similarly for U4. It is easy to check that f = p1WLwC satisfies the
assumptions of Proposition 4.3.12: Since 〈f〉1 = 0, we also have 〈∂af〉1 = 0 for each multi-index
a. From this it follows that π̄e(f) = 0 and that π̄e(∂af) = 0, since π̄e is uniform with respect to q1.
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Since no powers of p1 or p4 appear upon differentiation, we indeed obtain that f and all its derivatives
are in S0. A similar argument applies to f = −p4WLwC. Therefore, applying Proposition 4.3.16, we
find that on the set A2 ∪A3, the functions U1(x̄) and U4(x̄) are Oc(1), and that

L(U1(x̄)) = p1WLwC +Oc(|p2|−1/2 + |p3|−1/2) ,

L(U4(x̄)) = −p4WRwC +Oc(|p2|−1/2 + |p3|−1/2) .
(4.3.37)

In (4.3.37), the arguments of WL,WR and WC are indeed x and not x̄. Finally, we have

LR23 =
L(U1(x̄))

p2
2

+
L(U4(x̄))

p2
3

+Oc(p−3
2 ) +Oc(p−3

3 ) . (4.3.38)

The main assertion of the lemma then follows from this, (4.3.37), and Lemma 4.3.4. The assertion
(4.3.13) follows from the definition ofR23 and the following observation: using the explicit expression
for x̄, Proposition 4.3.12 (i) and Lemma 4.3.15, we obtain ∂p1(U1(x̄)) = (∂p1U1)(x̄) = Oc(1), and
∂p4(U1(x̄)) = (∂p4U1)(x̄) = 0 (and similarly for U4).

Remark 4.3.17. The construction above relies on the strict positivity of the temperatures (which
we assume throughout). Nonetheless, it can be adapted to the case T1 = T4 = 0. In this case, the
external rotors are not ergodic under the decoupled dynamics: they deterministically slow down and
asymptotically reach a given position that depends on the initial condition. Therefore, the conclusion
of Lemma 4.3.11 does not hold. However, the counterterm R23 that we obtained still produces the
desired effect. Indeed, at zero temperature, the definition of U1 becomes

U1(x) = −
∫ ∞

0
p1(t)WL(q2(t)− q1(t))wC(q3(t)− q2(t)) ,

where x(t) is the deterministic solution given in (4.3.20) and (4.3.21) with initial condition x and
T1 = T4 = 0. Since p1(t) decreases exponentially fast and WLwC is bounded, this integral still
converges. A similar argument applies to U4.

4.4. Constructing a global Lyapunov function

We construct here the Lyapunov function of Theorem 4.1.4. We start by fixing the parameters defining
the sets Ω2,Ω3,Ωc and the functions V2, V3, Vc.

We assume throughout this section that θ is fixed and satisfies

0 < θ < min

(
1

T1
,

1

T4

)
. (4.4.1)

This condition is necessary to apply Proposition 4.2.4 and Proposition 4.3.5. In addition, it
guarantees that when p2

1 + p2
4 is large, exp(θH) decreases very fast:

Lemma 4.4.1. There are constants C7, C8 > 0 such that

LeθH ≤ (C7 − C8(p2
1 + p2

4))eθH .
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Proof. SinceLeθH =
∑

b=1,4

(
−γbθ(1− θTb)p2

b + γbθTb
)
eθH , the result follows from the condition

on θ.

We next choose the constants k, `, a, m, and finally R. First, we fix k large enough, and require a
lower bound R0 on R so that the conclusions of Proposition 4.2.4 hold on Ωj(k,R), j = 2, 3. We
then fix the parameters a (appearing in V2, V3) and ` such that

2

`
< a <

2

k
. (4.4.2)

As a consequence, Ωc(`,m,R) now depends only on m and R, which we fix large enough so that
Proposition 4.3.5 applies, and so that m > ` and R ≥ R0.

This choice satisfies the condition 1 ≤ k < ` < m imposed in (4.1.8). This ensures that the sets
Ωj (j = 2, 3) and Ωc have “large” intersections, and that they indeed look as shown in Figure 4.4 and
Figure 4.5. Moreover, condition (4.4.2) ensures that for large |pj |, j = 2, 3,

|pj |2/` � |pj |a � |pj |2/k ,

which will be crucial.

We next introduce smooth cutoff functions for the sets Ω2,Ω3,Ωc. For this, we consider for each
set a thin “boundary layer” included in the set itself.

Definition 4.4.2. Let P be a subset of the momentum space R4. We define B(P) = {p ∈ P :

dist(p,Pc) < 1}.

Lemma 4.4.3. Let P ⊂ R4. Then, there is a smooth function ψ : R4 → [0, 1] with the following
properties. First, ψ(p) = 1 on P \ B(P) and ψ(p) = 0 on Pc, with some interpolation on B(P).
Secondly, ∂aψ is bounded on R4 for each multi-index a.

Proof. Such a function is obtained by appropriately regularizing the characteristic function of the set
{p ∈ P : dist(p,Pc) > 1/2} ⊂ R4.

Since the definition of sets Ωc and Ωj , j = 2, 3, involves only the momenta, we can write
Ωc = T4 × Pc and Ωj = T4 × Pj for some sets Pc,Pj ⊂ R4. We apply Lemma 4.4.3 to Pc,P2 and
P3, and denote by ψc, ψ2, and ψ3 the functions obtained. We introduce also the sets

B(Ωc) = T4 × B(Pc), B(Ω2) = T4 × B(P2), B(Ω3) = T4 × B(P3) .

Obviously, B(Ωc) ⊂ Ωc and B(Ωj) ⊂ Ωj .

Proof of Theorem 4.1.4. We show that the Lyapunov function

V = 1 + eθH +
∑

j=2,3

ψj(p)Vj +Mψc(p)Vc
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has the necessary properties, provided that the constant M is large enough. We start by proving (4.1.5).
From (4.2.15) and (4.3.8), we immediately obtain the bound

1 + eθH ≤ V ≤ c(ψ2e
|p2|a + ψ3e

|p3|a + ψc · (p2
2 + p2

3))eθH , (4.4.3)

which is slightly sharper than (4.1.5).

We next turn to the bound on LV . We introduce the set

G = {x ∈ Ω : p2
1 + p2

4 < (1 + C7)/C8} , (4.4.4)

with C7, C8 as in Lemma 4.4.1, so that

LeθH ≤ −eθH + (1 + C7)1Ge
θH ≤ −eθH + C91Ge

θ
2

(p22+p23) (4.4.5)

for some C9 > 0, where we have used that H ≤ c +
p22
2 +

p23
2 on G. Moreover, observe that for

j = 2, 3, there is a polynomial zj(p) such that

L(ψjVj) = ψjLVj + VjLψj + 2
∑

b=1,4

γbTb(∂pbψj)(∂pbVj)

≤ −C3ψjp
−2
j e|pj |

a+ θ
2
p2j + VjLψj + 2

∑

b=1,4

γbTb(∂pbψj)(∂pbVj)

≤ (−1ΩjC3p
−2
j + 1B(Ωj)zj(p))e

|pj |a+ θ
2
p2j ,

(4.4.6)

where the first inequality follows from (4.2.16) and the second inequality holds because the derivatives
of ψj(p) have support on B(Ωj), because |ψj − 1Ωj | ≤ 1B(Ωj), and because of (4.2.15).

Similarly, using Proposition 4.3.5, we obtain a polynomial zc(p) such that on Ω

L(ψc(p)Vc) ≤ (−1ΩcC6 + 1B(Ωc)zc(p))e
θ
2

(p22+p23) . (4.4.7)

Combining (4.4.5), (4.4.6) and (4.4.7), we find

LV ≤ −eθH −
∑

j=2,3

1ΩjC3p
−2
j e|pj |

a+ θ
2
p2j − 1ΩcMC6e

θ
2

(p22+p23)

+ C91Ge
θ
2

(p22+p23) +
∑

j=2,3

1B(Ωj)zj(p)e
|pj |a+ θ

2
p2j +M1B(Ωc)zc(p)e

θ
2

(p22+p23) .
(4.4.8)

The first line contains the “good” terms. We next show that these terms dominate the others. Let
ε > 0. We claim that there is a (large) compact set K (which depends on ε) such that

1B(Ωj)zj(p)e
|pj |a+ θ

2
p2j ≤ εeθH + c1K , j = 2, 3 , (4.4.9)

1B(Ωc)zc(p)e
θ
2

(p22+p23) ≤ εeθH + ε
∑

j=2,3

1Ωjp
−2
j e|pj |

a+ θ
2
p2j + c1K , (4.4.10)
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1Ge
θ
2

(p22+p23) ≤ 1Ωce
θ
2

(p22+p23) + ε
∑

j=2,3

1Ωjp
−2
j e|pj |

a+ θ
2
p2j + c1K . (4.4.11)

We prove these bounds one by one.

• Proof of (4.4.9). We prove the bound for j = 2. First observe that

z2(p)e|p2|
a+ θ

2
p22−θH < cz2(p)e|p2|

a− θ
2

(p21+p23+p24) . (4.4.12)

By the definition of Ω2, when ‖p‖ → ∞ in B(Ω2), we find p2
1 + p2

3 + p2
4 ∼ |p2|2/k � |p2|a

(recalling that 2/k > a). Thus, the right-hand side of (4.4.12) vanishes in this limit, since z2 is
only a polynomial. This implies (4.4.9) if K is large enough.

• Proof of (4.4.10). By inspection of the definition (4.1.10) of Ωc, there are three regions B(Ωc)i,
i = 1, 2, 3, such that if the compact set K is large enough,

B(Ωc) ⊂ K ∪ B(Ωc)1 ∪ B(Ωc)2 ∪ B(Ωc)3 ,

where B(Ωc)1 is such that p2
2 + p2

3 ∼ (p2
1 + p2

4)m, where B(Ωc)2 ⊂ Ω2 is such that p2`
3 ∼ p2

2,
and where B(Ωc)3 ⊂ Ω3 is such that p2`

2 ∼ p2
3 (see Figure 4.4 and Figure 4.5).

Since zc(p)e
θ
2

(p22+p23) is bounded on compact sets, (4.4.10) trivially holds on K. We next turn
to B(Ωc)1. We have

zc(p)e
θ
2

(p22+p23)−θH < czc(p)e
− θ

2
(p21+p24) .

The right-hand side vanishes when ‖p‖ → ∞ in B(Ωc)1, and thus by enlarging K if necessary,
we find zc(p)e

θ
2

(p22+p23) ≤ εeθH + c1K on B(Ωc)1, which implies (4.4.10).

Now, consider B(Ωc)2. We have

zc(p)e
θ
2

(p22+p23)

p−2
2 e|p2|

a+ θ
2
p22

= zc(p)p
2
2e

θ
2
p23−|p2|a .

As ‖p‖ → ∞ in B(Ωc)2, the right-hand side vanishes, since p2
3 ∼ |p2|2/` and a > 2/`.

Therefore, zc(p)e
θ
2

(p22+p23) ≤ εp−2
2 e|p2|

a+ θ
2
p22 + c1K on B(Ωc)2 for large enough K, and thus

(4.4.10) holds on B(Ωc)2 since B(Ωc)2 ⊂ Ω2.

A similar argument applies for B(Ωc)3, which completes the proof of (4.4.10).

• Proof of (4.4.11). Observe that for K large enough, the set G defined in (4.4.4) verifies

G ⊂ K ∪ Ω2 ∪ Ωc ∪ Ω3 .

On K and Ωc, (4.4.11) holds trivially. On G ∩ Ω2 \ Ωc and for large enough ‖p‖, we have
p2

3 ≤ |p2|2/` (otherwise we would have x ∈ Ωc), and therefore

e
θ
2

(p22+p23)

p−2
2 e|p2|

a+ θ
2
p22

= p2
2e

θ
2
p23−|p2|a ≤ p2

2e
θ
2
|p2|2/`−|p2|a .
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Since a > 2/`, and by enlargingK if necessary, we have e
θ
2

(p22+p23) ≤ εp−2
2 e|p2|

a+ θ
2
p22 +c1K on

G∩Ω2 \Ωc, so that (4.4.11) holds on this set. Since a similar argument applies in G∩Ω3 \Ωc,
the proof of (4.4.11) is complete.

Substituting (4.4.9), (4.4.10), and (4.4.11) into (4.4.8), we find

LV ≤ −(1− 2ε−Mε)eθH −
∑

j=2,3

1Ωj (C3 − C9ε−Mε)p−2
j e|pj |

a+ θ
2
p2j

− 1Ωc(MC6 − C9)e
θ
2

(p22+p23) + c1K .

Since the constants Ci do not depend on ε and M , we can make the three parentheses (1− 2ε−Mε),
(C3 − C9ε−Mε) and (MC6 − C9) positive by choosing M large enough and then ε small enough.
Using again (4.2.15) and (4.3.8), we finally obtain

LV ≤ −ceθH − c
∑

j=2,3

1Ωj

Vj
p2
j

− c1Ωc

Vc
p2

2 + p2
3

+ c1K . (4.4.13)

We now show that this implies (4.1.6). Observe that since V ≥ eθH , we have log V ≥ θH , and
therefore, for j = 2, 3,

p2
j ≤ p2

2 + p2
3 ≤ cH + c ≤ c log V + c ≤ c(log V + 2) .

Since also −eθH ≤ −eθH/(2 + log V ), we obtain by (4.4.13) that

LV ≤ −ce
θH + 1Ω2V2 + 1Ω3V3 + 1ΩcVc

2 + log V
+ c1K = − cV

2 + log(V )
+ c1K ,

which, by the definition (4.1.7) of ϕ, proves (4.1.6).

4.5. Proof of the main theorem

Now that we have a Lyapunov function (Theorem 4.1.4), we can prove Theorem 4.1.3 in the spirit of
of Chapter 3. In addition to Theorem 4.1.4, we need a few other ingredients.

We first use the result of [16] about subgeometric ergodicity. We state it here in a simplified form.
For a definition of “irreducible skeleton” and “petite set”, see the introduction of [16] or §3.2 in the
present thesis.

Theorem 4.5.1 (Douc-Fort-Guillin (2009)). Assume that a skeleton of the process (4.1.2) is irreducible
and let V : Ω→ [1,∞) be a smooth function with lim‖p‖→∞ V (q, p) = +∞. If there are a petite set
K and a constant C such that LV ≤ C1K − ϕ(V ) for some differentiable, concave and increasing
function ϕ : [1,∞) → (0,∞), then the process admits a unique invariant measure π, and for any
z ∈ [0, 1], there exists a constant C ′ such that for all t ≥ 0 and all x ∈ Ω,

‖P t(x, · )− π‖(ϕ◦V )z ≤ g(t)C ′V (x) , (4.5.1)
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where g(t) = (ϕ ◦H−1
ϕ (t))z−1, with Hϕ(u) =

∫ u
1

ds
ϕ(s) .

Proof. This is a combination of [16, Theorems 3.2 and 3.4] for the following “inverse Young’s
functions” (in the language of [16]): Ψ1(s) ∝ sz−1 and Ψ2(s) ∝ sz .

Theorem 4.1.4 provides most of the input to Theorem 4.5.1, but we still need to check that there is
an irreducible skeleton, and that the set K of Theorem 4.1.4 is petite. To this end, we introduce, as in
Chapter 3,

Proposition 4.5.2. The following holds.

(i) The transition probabilities P t(x,dy) have a C∞((0,∞) × Ω × Ω) density pt(x, y) and the
process is strong Feller.

(ii) The time-1 skeleton chain (xn)n=0,1,2,··· admits the Lebesgue measure on (Ω,B) as a maximal
irreducibility measure.

(iii) All compact subsets of Ω are petite.

Proof. (i) follows from Hörmander’s condition. The proof that Hörmander’s condition holds, which
relies on Assumption 4.1.2, is very similar to that of Lemma 3.5.3 and is left to the reader. The proof
of (ii) is exactly as Lemma 3.5.6, and (iii) follows from (i), (ii), and Proposition 6.2.8 of [43].

We can now finally give the

Proof of Theorem 4.1.3. Let 0 ≤ θ1 < min(1/T1, 1/T4) and θ2 > θ1. Choose now θ ∈ (θ1, θ2)

such that θ < min(1/T1, 1/T4). By Theorem 4.1.4, we have a Lyapunov function 1 + eθH ≤ V ≤
c(e|p2|

a
+ e|p3|

a
)eθH with a ∈ (0, 1) such that LV ≤ c1K − ϕ(V ), where ϕ(s) = c3 s/(2 + log(s)),

and where K is a compact (and therefore petite) set. Let now z ∈ (0, 1) be such that zθ > θ1. By
Theorem 4.5.1, we obtain the existence of a unique invariant measure π such that

‖P t(x, · )− π‖(ϕ◦V )z ≤ ce−λt
1/2
V (x) , (4.5.2)

where we have used that with the notation of Theorem 4.5.1,

g(t) = (ϕ ◦H−1
ϕ (t))z−1 ≤ ce−λt1/2 (4.5.3)

for some λ > 0. Indeed, Hϕ(u) = 1
c3

∫ u
1

2+log s
s ds = 1

2c3
(log u)2 + 2

c3
log u, so that H−1

ϕ (t) =

exp((2c3t+ 4)1/2 − 2) and (ϕ◦H−1
ϕ (t)) = (2c3t+ 4)−1/2 exp((2c3t+ 4)1/2−2) ≥ cect1/2 , which

implies (4.5.3).
Then, (4.1.4) follows from (4.5.2) and the following two observations. First, we have V ≤ ceθ2H

since θ < θ2. Secondly, by our choice of z, we have eθ1H ≤ c(ϕ ◦V )z , so that ‖P t(x, · )−π‖eθ1H ≤
c ‖P t(x, · )− π‖(ϕ◦V )z .

Thus, we have proved (iii). Since (i) and the smoothness assertion in (ii) follow from Proposi-
tion 4.5.2, the proof is complete.
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Remark 4.5.3. It would of course be desirable to generalize Theorem 4.1.3 to longer chains of rotors.
The proof of Proposition 4.5.2 carries on unchanged to chains of arbitrary length. Therefore, in order
to prove the existence of a steady state and obtain a convergence rate (with Theorem 4.5.1), it “suffices”
to find an appropriate Lyapunov function. We expect the convergence rate to be limited by the central
rotor (if the length of the chain is odd) or the two central rotors (if the length is even). Preliminary
studies indicate that for chains of length n, a convergence rate exp(−ctk) with k = 1/(2dn/2e − 2)

is to be expected. Obtaining such a result raises some major technical difficulties. First, the averaging
procedure has to be carried to much higher orders, which quickly becomes intractable if we proceed
explicitly, as we do here. Moreover, the number of regimes to consider grows very rapidly with n.
And finally, some generalization of Proposition 4.3.12 to more general (nonlinear) decoupled systems
will be needed, with the difficulties mentioned in Remark 4.3.13. We are trying to solve these issues
by developing a inductive method which requires fewer explicit calculations, but much work remains
to be done.

4.6. Appendix: Resonances in the deterministic case

In §4.2, two resonant terms appeared, namely p1WLwC/p
2
2 and −p4WRwC/p

2
3. These terms have a

physical meaning. We start with the case where WI(s) = − cos(s), I = L,C,R. Then,

WLwC = − cos(q2 − q1) sin(q3 − q2) =
sin(q1 − q3)

2
+

sin(2q2 − q3 − q1)

2
. (4.6.1)

Consider now the regime where most of the energy is concentrated at sites 2 and 3. In the approximate
dynamics (4.3.1), we see that sin(q1 − q3) oscillates with frequency p3/2π and mean zero, while
sin(2q2 − q3 − q1) oscillates with frequency (2p2 − p3)/2π. When p3 = 2p2, the second term does
not oscillate.

In Figure 4.8, we represent some trajectories projected onto the p2p3-plane in the deterministic
case (i.e., T1 = T4 = 0). We observe that some trajectories are “trapped” by the line p3/p2 = 2, while
some others just cross it. By symmetry, the same happens when p3/p2 = 1/2 because of the term
−p4WRwC/p

2
3. This phenomenon does not occur when the same conditions are used with positive

temperatures (see Figure 4.3). A finer analysis (not detailed here) shows that in the resonant regime
p3/p2 = 2, a net momentum flux from p3 to p2 appears, and similarly for p3/p2 = 1/2 with a flux
from p2 to p3. These fluxes stabilize the resonant regimes.

If we take WI(s) = − cos(nIs) for some nI ∈ Z∗, I = L,C,R, we find by a decomposition
similar to (4.6.1) some resonances at

p3

p2
∈
{
nC + nL

nC
,
nC − nL

nC
,

nC

nC + nR
,

nC

nC − nR

}
.

(If some of these values are 0 or∞, we exclude them since our approximation is reasonable when
both |p2| and |p3| are very large.) For example, if we choose (nL, nC, nR) = (3, 1, 3), we obtain the
ratios p3/p2 = 4, 1/4,−2,−1/2, which we indeed observe in Figure 4.9.
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Figure 4.8 – Projection of a few orbits on the p2p3-plane, with WL = WC = WR = − cos,
γ1 = γ4 = 1, T1 = T4 = 0. The resonances are depicted as dashed lines.

Figure 4.9 – Projection of a few orbits on the p2p3-plane, with γ1 = γ4 = 1, T1 = T4 = 0, and
(nL, nC, nR) = (3, 1, 3). The resonances are depicted as dashed lines.

Of course, a similar analysis applies to more general interaction potentials by taking their Fourier
series and treating the (products of) modes separately.
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